scholarly journals A Novel Tricyclic Ligand-Containing Nonpeptidic HIV-1 Protease Inhibitor, GRL-0739, Effectively Inhibits the Replication of Multidrug-Resistant HIV-1 Variants and Has a Desirable Central Nervous System Penetration PropertyIn Vitro

2015 ◽  
Vol 59 (5) ◽  
pp. 2625-2635 ◽  
Author(s):  
Masayuki Amano ◽  
Yasushi Tojo ◽  
Pedro Miguel Salcedo-Gómez ◽  
Garth L. Parham ◽  
Prasanth R. Nyalapatla ◽  
...  

ABSTRACTWe report here that GRL-0739, a novel nonpeptidic HIV-1 protease inhibitor containing a tricycle (cyclohexyl-bis-tetrahydrofuranylurethane [THF]) and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (50% effective concentration [EC50], 0.0019 to 0.0036 μM), with minimal cytotoxicity (50% cytotoxic concentration [CC50], 21.0 μM). GRL-0739 blocked the infectivity and replication of HIV-1NL4-3variants selected by concentrations of up to 5 μM ritonavir or atazanavir (EC50, 0.035 to 0.058 μM). GRL-0739 was also highly active against multidrug-resistant clinical HIV-1 variants isolated from patients who no longer responded to existing antiviral regimens after long-term antiretroviral therapy, as well as against the HIV-2RODvariant. The development of resistance against GRL-0739 was substantially delayed compared to that of amprenavir (APV). The effects of the nonspecific binding of human serum proteins on the anti-HIV-1 activity of GRL-0739 were insignificant. In addition, GRL-0739 showed a desirable central nervous system (CNS) penetration property, as assessed using a novelin vitroblood-brain barrier model. Molecular modeling demonstrated that the tricyclic ring and methoxybenzene of GRL-0739 have a larger surface and make greater van der Waals contacts with protease than in the case of darunavir. The present data demonstrate that GRL-0739 has desirable features as a compound with good CNS-penetrating capability for treating patients infected with wild-type and/or multidrug-resistant HIV-1 variants and that the newly generated cyclohexyl-bis-THF moiety with methoxybenzene confers highly desirable anti-HIV-1 potency in the design of novel protease inhibitors with greater CNS penetration profiles.

2016 ◽  
pp. AAC.01428-16 ◽  
Author(s):  
Masayuki Amano ◽  
Pedro Miguel Salcedo-Gómez ◽  
Rui Zhao ◽  
Ravikiran S. Yedidi ◽  
Debananda Das ◽  
...  

We here report that GRL-10413, a novel non-peptidic HIV-1 protease inhibitor (PI) containing a modified P1 moiety and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (EC50: 0.00035 - 0.0018 μM) with minimal cytotoxicity (CC50: 35.7 μM). GRL-10413 blocked the infectivity and replication of HIV-1NL4-3variants selected by up to 5 μM concentrations of atazanavir, lopinavir, or amprenavir (EC50: 0.0021 - 0.0023 μM). GRL-10413 also maintained its strong antiviral activity against multi-drug-resistant clinical HIV-1 variants isolated from patients, who no longer responded to various antiviral regimens after long-term antiretroviral therapy. The development of resistance against GRL-10413 was significantly delayed compared to that of APV. In addition, GRL-10413 showed a favorable central nervous system (CNS) penetration property as assessed with anin vitroblood brain barrier (BBB) reconstruction system. Analysis of the crystal structure of HIV-1 protease in complex with GRL-10413 demonstrated that the modified P1 moiety of GRL-10413 has a greater hydrophobic surface area and makes greater van der Waals contacts with active-site amino acids of protease than in the case of darunavir. Moreover, the chlorine substituent in the P1 moiety interacts with protease in two distinct configurations. The present data demonstrate that GRL-10413 has desirable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants with favorable CNS-penetration capability and that the newly modified P1-moiety may confer desirable features in designing novel anti-HIV-1 PIs.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
C. Béguelin ◽  
M. Vázquez ◽  
M. Bertschi ◽  
S. Yerly ◽  
D. de Jong ◽  
...  

Abstract In this study, we report the case of a patient infected with human immunodeficiency virus (HIV)-1 who developed ataxia and neurocognitive impairment due to viral escape within the central nervous system (CNS) with a multidrug-resistant HIV-1 despite long-term viral suppression in plasma. Antiretroviral therapy optimization with drugs with high CNS penetration led to viral suppression in the CSF, regression of ataxia, and improvement of neurocognitive symptoms.


2007 ◽  
Vol 18 (8) ◽  
pp. 575-576 ◽  
Author(s):  
Osamu Usami ◽  
Yugo Ashino ◽  
Yuichi Komaki ◽  
Masafumi Tomaki ◽  
Toshiya Irokawa ◽  
...  

Some of the HIV-1-infected patients who were given highly active anti-retroviral therapy (HAART) including efavirenz (EFV) presented adverse central nervous system (CNS) symptoms such as fatigue and insomnia. The incidence of adverse CNS symptoms is associated with hepatic cytochrome P450 isozymes (CYP2B6) polymorphisms. For example, CYP2B6 *6 (G516T and A785G) and *7 (G516T, A785G and C1459T) prolonged the EFV half-life despite discontinuation of EFV. CYP2B6 *2/*2 (C64T) is extremely rare and there have been no data describing the EFV plasma concentrations in C64T homozygous patients, who developed adverse CNS symptoms. C64T homozygous possibly has some catalytic defects.


ChemMedChem ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. 762-762
Author(s):  
Arun K. Ghosh ◽  
Kalapala Venkateswara Rao ◽  
Prasanth R. Nyalapatla ◽  
Satish Kovela ◽  
Margherita Brindisi ◽  
...  

2007 ◽  
Vol 51 (9) ◽  
pp. 3147-3154 ◽  
Author(s):  
Richard Hazen ◽  
Robert Harvey ◽  
Robert Ferris ◽  
Charles Craig ◽  
Phillip Yates ◽  
...  

ABSTRACT Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC50s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC50s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC50s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro.


2020 ◽  
Vol 32 ◽  
pp. 5-11
Author(s):  
Celeste Faia ◽  
Karlie Plaisance-Bonstaff ◽  
Francesca Peruzzi

2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Masayuki Amano ◽  
Pedro Miguel Salcedo-Gómez ◽  
Ravikiran S. Yedidi ◽  
Rui Zhao ◽  
Hironori Hayashi ◽  
...  

ABSTRACT There is currently no specific therapeutics for the HIV-1-related central nervous system (CNS) complications. Here we report that three newly designed CNS-targeting HIV-1 protease inhibitors (PIs), GRL-083-13, GRL-084-13, and GRL-087-13, which contain a P1-3,5-bis-fluorophenyl or P1-para-monofluorophenyl ring, and P2-bis-tetrahydrofuran (bis-THF) or P2-tetrahydropyrano-tetrahydrofuran (Tp-THF), with a sulfonamide isostere, are highly active against wild-type HIV-1 strains and primary clinical isolates (50% effective concentration [EC50], 0.0002 to ∼0.003 μM), with minimal cytotoxicity. These CNS-targeting PIs efficiently suppressed the replication of HIV-1 variants (EC50, 0.002 to ∼0.047 μM) that had been selected to propagate at high concentrations of conventional HIV-1 PIs. Such CNS-targeting PIs maintained their antiviral activity against HIV-2ROD as well as multidrug-resistant clinical HIV-1 variants isolated from AIDS patients who no longer responded to existing antiviral regimens after long-term therapy. Long-term drug selection experiments revealed that the emergence of resistant-HIV-1 against these CNS-targeting PIs was substantially delayed. In addition, the CNS-targeting PIs showed the most favorable CNS penetration properties among the tested compounds, including various FDA-approved anti-HIV-1 drugs, as assessed with the in vitro blood-brain barrier reconstruction system. Crystallographic analysis demonstrated that the bicyclic rings at the P2 moiety of the CNS-targeting PIs form strong hydrogen-bond interactions with HIV-1 protease (PR) active site. Moreover, both the P1-3,5-bis-fluorophenyl and P1-para-monofluorophenyl rings sustain greater van der Waals contacts with PR than in the case of darunavir (DRV). The data suggest that the present CNS-targeting PIs have desirable features for treating patients infected with wild-type and/or multidrug-resistant HIV-1 strains and might serve as promising preventive and/or therapeutic candidates for HIV-1-associated neurocognitive disorders (HAND) and other CNS complications.


Author(s):  
Masayuki Amano ◽  
Ravikiran S. Yedidi ◽  
Pedro Miguel Salcedo-Gómez ◽  
Hironori Hayashi ◽  
Kazuya Hasegawa ◽  
...  

To date, there are no specific treatment regimens for the HIV-1-related central nervous system (CNS) complications, such as HIV-1-associated neurocognitive disorders (HAND). In the present study, we report that two newly generated CNS-targeting HIV-1 protease inhibitors (PIs), GRL-08513 and GRL-08613, which have P1-3,5- bis -fluorophenyl- or P1- para -monofluorophenyl-ring, and P2-tetrahydropyrano-tetrahydrofuran ( Tp -THF) with a sulfonamide isostere, are potent against wild-type HIV-1s and multiple clinically isolated HIV-1s (EC 50 : 0.0001∼0.0032 μM). As assessed with HIV-1 variants that had been selected in vitro to propagate at 5 μM concentration of each HIV-1 PI (atazanavir, lopinavir, or amprenavir), GRL-08513 and GRL-08613 efficiently inhibited the replication of these highly-PI-resistant variants (EC 50 : 0.003∼0.006 μM). GRL-08513 and GRL-08613 also maintained their antiviral activity against HIV-2 ROD as well as severe multi-drug-resistant clinical HIV-1 variants. Additionally, when we assessed with the in vitro blood-brain barrier (BBB) reconstruction system, GRL-08513 and GRL-08613 showed the most promising properties of CNS-penetration among the evaluated compounds including the majority of FDA-approved cART drugs. In the crystallographic analysis of compound-protease (PR) complexes, it was demonstrated that the Tp -THF rings at the P2 moiety of GRL-08513 and GRL-08613 form robust hydrogen-bond interactions with the active-site of HIV-1 PR. Furthermore, both the P1-3,5- bis -fluorophenyl- and P1- para -monofluorophenyl-rings sustain greater contact surfaces and form stronger van der Waals interactions with PR compared to the case of darunavir-PR complex. Taken together, these results strongly suggest that GRL-08513 and GRL-08613 have favorable features for the patients infected with wild-type/multi-drug-resistant HIV-1s, and might serve as candidates of preventive and/or therapeutic for HAND and other CNS complications.


1995 ◽  
Vol 28 (1) ◽  
pp. 25-38 ◽  
Author(s):  
Sudhichai Chokekijchai ◽  
Takuma Shirasaka ◽  
John N. Weinstein ◽  
Hiroaki Mitsuya

1997 ◽  
Vol 8 (1) ◽  
pp. 54-59
Author(s):  
JK Lazdins ◽  
JK Walker ◽  
RM Cozens ◽  
G Flesch ◽  
C Czendlik ◽  
...  

The aim of the study was to determine whether the concentration of CGP 53437 measured in the sera of normal volunteers following oral administration of a single dose, had retained its anti-HIV activity; and whether such results could be of predictive value for future clinical antiviral efficacy studies. CGP 53437 is an inhibitor of HIV-1 protease that suppresses HIV-1 replication in human lymphocytes in vitro at 100 nM. The in vitro anti-HIV activity of human sera obtained from CGP 53437-treated individuals was compared with that of sera spiked with known concentrations of CGP 53437 (in the presence or absence of α-1 acid glycoprotein). It was found that the concentration of the compound measured in the sera from treated individuals provided the expected in vitro anti-HIV activity. These results not only validate our analytical method for detection of CGP 53437, but also support the notion that interaction of CGP 53437 with plasma proteins does not significantly affect its antiviral activity (shift of the ED90 by a factor of three). In conclusion, ex vivo anti-HIV activity determinations of sera containing an HIV protease inhibitor, in conjunction with the pharmacokinetic evaluation during Phase I clinical studies, can provide valuable information regarding the suitability of such inhibitors for further clinical studies.


Sign in / Sign up

Export Citation Format

Share Document