scholarly journals Pharmacodynamic activity of a cephalosporin, Ro 40-6890, in human skin blister fluid: antibiotic activity in concert with host defense mechanisms.

1993 ◽  
Vol 37 (12) ◽  
pp. 2622-2627
Author(s):  
J F Hoogkamer ◽  
W H Hesse ◽  
S Sansano ◽  
W Zimmerli
2000 ◽  
Vol 44 (5) ◽  
pp. 1352-1355 ◽  
Author(s):  
Andrej Trampuz ◽  
Markus Wenk ◽  
Zarko Rajacic ◽  
Werner Zimmerli

ABSTRACT The pharmacokinetics of levofloxacin in serum and in skin blister fluid (SBF) was determined for 20 volunteers after a single 500-mg oral dose of levofloxacin. In addition, ex vivo bactericidal activity of SBF against Streptococcus pneumoniae and Staphylococcus aureus was studied. SBF containing levofloxacin and granulocytes killed 5.2 log of Streptococcus pneumoniae bacteria and 2.0 log of Staphylococcus aureus bacteria during a 6-h incubation.


1975 ◽  
Vol 48 (5) ◽  
pp. 706-720 ◽  
Author(s):  
M. Schutte ◽  
R. DiCamelli ◽  
P. Murphy ◽  
M. Sadove ◽  
H. Gewurz

2021 ◽  
Vol 22 (5) ◽  
pp. 2566 ◽  
Author(s):  
Barbara Ruaro ◽  
Francesco Salton ◽  
Luca Braga ◽  
Barbara Wade ◽  
Paola Confalonieri ◽  
...  

Alveolar type II (ATII) cells are a key structure of the distal lung epithelium, where they exert their innate immune response and serve as progenitors of alveolar type I (ATI) cells, contributing to alveolar epithelial repair and regeneration. In the healthy lung, ATII cells coordinate the host defense mechanisms, not only generating a restrictive alveolar epithelial barrier, but also orchestrating host defense mechanisms and secreting surfactant proteins, which are important in lung protection against pathogen exposure. Moreover, surfactant proteins help to maintain homeostasis in the distal lung and reduce surface tension at the pulmonary air–liquid interface, thereby preventing atelectasis and reducing the work of breathing. ATII cells may also contribute to the fibroproliferative reaction by secreting growth factors and proinflammatory molecules after damage. Indeed, various acute and chronic diseases are associated with intensive inflammation. These include oedema, acute respiratory distress syndrome, fibrosis and numerous interstitial lung diseases, and are characterized by hyperplastic ATII cells which are considered an essential part of the epithelialization process and, consequently, wound healing. The aim of this review is that of revising the physiologic and pathologic role ATII cells play in pulmonary diseases, as, despite what has been learnt in the last few decades of research, the origin, phenotypic regulation and crosstalk of these cells still remain, in part, a mystery.


2008 ◽  
Vol 1 (2) ◽  
pp. 123-135 ◽  
Author(s):  
Poonam Dharmani ◽  
Vikas Srivastava ◽  
Vanessa Kissoon-Singh ◽  
Kris Chadee

Life Sciences ◽  
1981 ◽  
Vol 29 (4) ◽  
pp. 391-396 ◽  
Author(s):  
Aarne Oikarinen ◽  
Lasse Viinikka ◽  
Heikki Rytsälä ◽  
Urpo Kiistala ◽  
Olavi Ylikorkala

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2510
Author(s):  
Paulina Żelechowska ◽  
Joanna Pastwińska ◽  
Ewa Brzezińska-Błaszczyk ◽  
Justyna Agier

The fungal kingdom includes a group of microorganisms that are widely distributed in the environment, and therefore the exposure to them is almost constant. Furthermore, fungal components of the microbiome, i.e., mycobiome, could serve as a reservoir of potentially opportunistic pathogens. Despite close encounters with fungi, defense mechanisms that develop during fungal infections remain unexplored. The strategic location of mast cells (MCs) close to the external environment places them among the first cells to encounter pathogens along with the other innate immune cells. MCs are directly involved in the host defense through the ability to destroy pathogens or indirectly by activating other immune cells. Most available data present MCs’ involvement in antibacterial, antiviral, or antiparasitic defense mechanisms. However, less is known about their contribution in defense mechanisms against fungi. MCs may support immune responses to fungi or their specific molecules through initiated degranulation, synthesis and release of cytokines, chemokines, mediators, and generation of reactive oxygen species (ROS), as well as immune cells’ recruitment, phagocytosis, or provision of extracellular DNA traps. This review summarizes current knowledge on host defense mechanisms against fungi and MCs’ involvement in those processes. It also describes the effects of fungi or fungus-derived constituents on MCs’ activity.


Sign in / Sign up

Export Citation Format

Share Document