scholarly journals KY-62, a Polyene Analog of Amphotericin B, for Treatment of Murine Candidiasis

1998 ◽  
Vol 42 (1) ◽  
pp. 147-150 ◽  
Author(s):  
John R. Graybill ◽  
Laura K. Najvar ◽  
Annette Fothergill ◽  
Thomas Hardin ◽  
Michael Rinaldi ◽  
...  

ABSTRACT KY-62 is a water-soluble analog of amphotericin B. In vitro testing of five clinical isolates of Candida albicans showed KY-62 to have potency similar to that of amphotericin B. KY-62 was administered to mice infected intravenously with C. albicans. In vivo, KY-62 was effective in immunocompetent mice, with potency similar to that of amphotericin B. KY-62 was well tolerated up to 30 mg/kg of body weight per dose, an amount that would be lethal with amphotericin B. KY-62 was less effective in mice rendered neutropenic with 5-fluorouracil. The addition of flucytosine had little effect. KY-62 may have potential for clinical development.

2005 ◽  
Vol 49 (2) ◽  
pp. 638-642 ◽  
Author(s):  
Anthony Cacciapuoti ◽  
Maya Gurnani ◽  
Judith Halpern ◽  
Christine Norris ◽  
Reena Patel ◽  
...  

ABSTRACT The interaction of posaconazole and amphotericin B was evaluated in concomitant treatment of Candida albicans systemic infections in immunocompetent mice by using four strains of C. albicans with different susceptibilities to fluconazole. Posaconazole and amphotericin B were each tested at four dose levels alone and in all possible combinations against each C. albicans strain. Survival curves of mice treated with combinations of posaconazole and amphotericin B were statistically compared with those of mice treated with the component monotherapies. Of the 64 total combinations evaluated against the C. albicans strains (16 combinations per strain), 20.3% were more effective in prolonging mouse survival than both of the monotherapies, 45.3% were more effective than one of the monotherapies, and 32.8% were similar to both monotherapies. No evidence of antagonism was observed between posaconazole and amphotericin B in this mouse model, consistent with in vitro results against the same strains.


2014 ◽  
Vol 59 (2) ◽  
pp. 1341-1343 ◽  
Author(s):  
Nathan P. Wiederhold ◽  
Laura K. Najvar ◽  
Annette W. Fothergill ◽  
Rosie Bocanegra ◽  
Marcos Olivo ◽  
...  

ABSTRACTWe evaluated thein vitroandin vivoactivities of the investigational arylamidine T-2307 against echinocandin-resistantCandida albicans. T-2307 demonstrated potentin vitroactivity, and daily subcutaneous doses between 0.75 and 6 mg/kg of body weight significantly improved survival and reduced fungal burden compared to placebo control and caspofungin (10 mg/kg/day) in mice with invasive candidiasis caused by an echinocandin-resistant strain. Thus, T-2307 may have potential use in the treatment of echinocandin-resistantC. albicansinfections.


2017 ◽  
Vol 56 (6) ◽  
pp. 703-710
Author(s):  
Michaela Lackner ◽  
Günter Rambach ◽  
Emina Jukic ◽  
Bettina Sartori ◽  
Josef Fritz ◽  
...  

Abstract No data are available on the in vivo impact of infections with in vitro azole-resistant Aspergillus fumigatus in immunocompetent hosts. Here, the aim was to investigate fungal fitness and treatment response in immunocompetent mice infected with A. fumigatus (parental strain [ps]) and isogenic mutants carrying either the mutation M220K or G54W (cyp51A). The efficacy of itraconazole (ITC) and posaconazole (PSC) was investigated in mice, intravenously challenged either with a single or a combination of ps and mutants (6 × 105 conidia/mouse). Organ fungal burden and clinical parameters were measured. In coinfection models, no fitness advantage was observed for the ps strain when compared to the mutants (M220K and G54W) independent of the presence or absence of azole-treatment. For G54W, M220K, and the ps, no statistically significant difference in ITC and PSC treatment was observed in respect to fungal kidney burden. However, clinical parameters suggest that in particular the azole-resistant strain carrying the mutation G54W caused a more severe disease than the ps strain. Mice infected with G54W showed a significant decline in body weight and lymphocyte counts, while spleen/body weight ratio and granulocyte counts were increased. In immunocompetent mice, in vitro azole-resistance did not translate into therapeutic failure by either ITC or PSC; the immune system appears to play the key role in clearing the infection.


2001 ◽  
Vol 45 (2) ◽  
pp. 485-494 ◽  
Author(s):  
Arnold Louie ◽  
Pamela Kaw ◽  
Partha Banerjee ◽  
Weiguo Liu ◽  
George Chen ◽  
...  

ABSTRACT In vitro time-kill studies and a rabbit model of endocarditis and pyelonephritis were used to define the impact that the order of exposure of Candida albicans to fluconazole (FLC) and amphotericin B (AMB), as sequential and combination therapies, had on the susceptibility of C. albicans to AMB and on the outcome. The contribution of FLC-induced resistance to AMB for C. albicans also was assessed. In vitro, AMB monotherapy rapidly killed each of four C. albicans strains; FLC alone was fungistatic. Preincubation of these fungi with FLC for 18 h prior to exposure to AMB decreased their susceptibilities to AMB for 8 to >40 h. Induced resistance to AMB was transient, but the duration of resistance increased with the length of FLC preincubation. Yeast sequentially incubated with FLC followed by AMB plus FLC (FLC→AMB+FLC) showed fungistatic growth kinetics similar to that of fungi that were exposed to FLC alone. This antagonistic effect persisted for at least 24 h. Simultaneous exposure of C. albicans to AMB and FLC [AMB+FLC(simult)] demonstrated activity similar to that with AMB alone for AMB concentrations of ≥1 μg/ml; antagonism was seen using an AMB concentration of 0.5 μg/ml. The in vitro findings accurately predicted outcomes in our rabbit infection model. In vivo, AMB monotherapy and treatment with AMB for 24 h followed by AMB plus FLC (AMB→AMB+FLC) rapidly sterilized kidneys and cardiac vegetations. AMB+FLC(simult) and FLC→AMB treatments were slower in clearing fungi from infected tissues. FLC monotherapy and FLC→AMB+FLC were both fungistatic and were the least active regimens. No adverse interaction was observed between AMB and FLC for the AMB→FLC regimen. However, FLC→AMB treatment was slower than AMB alone in clearing fungi from tissues. Thus, our in vitro and in vivo studies both demonstrate that preexposure of C. albicans to FLC reduces fungal susceptibility to AMB. The length of FLC preexposure and whether AMB is subsequently used alone or in combination with FLC determine the duration of induced resistance to AMB.


2002 ◽  
Vol 46 (5) ◽  
pp. 1240-1245 ◽  
Author(s):  
Justina Y. Ju ◽  
Cynthia Polhamus ◽  
Kieren A. Marr ◽  
Steven M. Holland ◽  
John E. Bennett

ABSTRACT Candida glabrata is the second leading cause of adult candidemia, resulting in high mortality. Amphotericin B is considered the treatment of choice, while the efficacy of fluconazole is controversial and caspofungin efficacy is unknown. To ascertain drug efficacy in vivo, the utility of a murine model of C. glabrata infection was investigated. C. glabrata was found to cause progressive, lethal infection when injected intravenously into C57BL/6 mice with reduced oxidative microbicidal capacity due to knockout of the p47phox gene. Spleen and kidney organ CFU counts were determined in groups of mice 2 days after the mice completed 6 days of daily intraperitoneal drug treatment, which began on the day of infection. Daily injections of fluconazole at 80 mg/kg did not reduce spleen or kidney CFU counts after infection with C. glabrata strains having in vitro fluconazole MICs of 2, 32, or 256 μg/ml compared to saline-treated controls. However, this fluconazole regimen reduced spleen CFU counts in mice infected with Candida albicans, an infection that is known to be responsive to fluconazole. Caspofungin at 5 mg/kg and amphotericin B at 5 mg/kg were both effective in reducing fungal burden in spleens and kidneys of C. glabrata-infected mice. Ten mice treated for 6 days with caspofungin at 1 mg/kg survived for 15 days, though all 10 saline-injected mice died or were so ill that they had to be sacrificed by 96 h postinfection. This murine model provided evidence of the efficacy of amphotericin B and caspofungin but not of fluconazole against C. glabrata infection.


2006 ◽  
Vol 51 (2) ◽  
pp. 510-520 ◽  
Author(s):  
Jeniel Nett ◽  
Leslie Lincoln ◽  
Karen Marchillo ◽  
Randall Massey ◽  
Kathleen Holoyda ◽  
...  

ABSTRACT Biofilms are microbial communities, embedded in a polymeric matrix, growing attached to a surface. Nearly all device-associated infections involve growth in the biofilm life style. Biofilm communities have characteristic architecture and distinct phenotypic properties. The most clinically important phenotype involves extraordinary resistance to antimicrobial therapy, making biofilm infections very difficulty to cure without device removal. The current studies examine drug resistance in Candida albicans biofilms. Similar to previous reports, we observed marked fluconazole and amphotericin B resistance in a C. albicans biofilm both in vitro and in vivo. We identified biofilm-associated cell wall architectural changes and increased β-1,3 glucan content in C. albicans cell walls from a biofilm compared to planktonic organisms. Elevated β-1,3 glucan levels were also found in the surrounding biofilm milieu and as part of the matrix both from in vitro and in vivo biofilm models. We thus investigated the possible contribution of β-glucans to antimicrobial resistance in Candida albicans biofilms. Initial studies examined the ability of cell wall and cell supernatant from biofilm and planktonic C. albicans to bind fluconazole. The cell walls from both environmental conditions bound fluconazole; however, four- to fivefold more compound was bound to the biofilm cell walls. Culture supernatant from the biofilm, but not planktonic cells, bound a measurable amount of this antifungal agent. We next investigated the effect of enzymatic modification of β-1,3 glucans on biofilm cell viability and the susceptibility of biofilm cells to fluconazole and amphotericin B. We observed a dose-dependent killing of in vitro biofilm cells in the presence of three different β-glucanase preparations. These same concentrations had no impact on planktonic cell viability. β-1,3 Glucanase markedly enhanced the activity of both fluconazole and amphotericin B. These observations were corroborated with an in vivo biofilm model. Exogenous biofilm matrix and commercial β-1,3 glucan reduced the activity of fluconazole against planktonic C. albicans in vitro. In sum, the current investigation identified glucan changes associated with C. albicans biofilm cells, demonstrated preferential binding of these biofilm cell components to antifungals, and showed a positive impact of the modification of biofilm β-1,3 glucans on drug susceptibility. These results provide indirect evidence suggesting a role for glucans in biofilm resistance and present a strong rationale for further molecular dissection of this resistance mechanism to identify new drug targets to treat biofilm infections.


2002 ◽  
Vol 46 (7) ◽  
pp. 2310-2312 ◽  
Author(s):  
Qiu N. Sun ◽  
Laura K. Najvar ◽  
Rosie Bocanegra ◽  
David Loebenberg ◽  
John R. Graybill

ABSTRACT The in vivo activities of posaconazole, itraconazole, and amphotericin B in neutropenic mice with zygomycosis were compared. The in vitro MICs of posaconazole and itraconazole for the strains of Mucor spp. used in this study ranged from 0.125 to 8 μg/ml and 0.25 to 8 μg/ml, respectively. The in vitro MIC range for amphotericin B is 0.125 to 0.25 μg/ml. At twice-daily doses of ≥15 mg/kg of body weight, posaconazole prolonged the survival of the mice and reduced tissue burden.


1996 ◽  
Vol 40 (6) ◽  
pp. 1342-1345 ◽  
Author(s):  
A Valentin ◽  
R Le Guennec ◽  
E Rodriguez ◽  
J Reynes ◽  
M Mallie ◽  
...  

Relationships between azole susceptibility and in vivo response to antifungal therapy in a murine model of candidiasis were investigated for Candida albicans isolates sampled from human immunodeficiency virus type 1-positive patients with oropharyngeal candidiasis. The susceptibilities of seven clinical isolates and two reference strains to fluconazole (FCZ) and itraconazole (ITZ) were determined in vitro by the broth microdilution method. Four isolates were resistant to FCZ and ITZ, two were susceptible to both azoles, and three were resistant to FCZ and susceptible to ITZ (dissociated resistance). CD1 mice were inoculated with each isolate and treated with either FCZ or ITZ (drug regimen, 5 mg/kg of body weight twice daily for 5 days). Quantitative cultures of kidneys were performed at the end of the treatment. On the other hand, the survival rates of the mice were followed daily. These two parameters were clearly correlated with in vitro susceptibility. Thus, the phenomenon of a dissociation of resistance to FCZ and ITZ may be found in vivo as well as in vitro.


1998 ◽  
Vol 42 (11) ◽  
pp. 3012-3013 ◽  
Author(s):  
C. Rimaroli ◽  
T. Bruzzese

ABSTRACT The in vitro activity of a new water-soluble polyene, SPA-S-843, was evaluated against 116 strains of Candida,Cryptococcus, and Saccharomyces spp. and compared with that of amphotericin B. SPA-S-843 demonstrated better inhibitory activity against all of the yeasts examined and better fungicidal activity against Candida albicans, Candida glabrata, Candida krusei, and Candida tropicalis than did amphotericin B.


1999 ◽  
Vol 43 (9) ◽  
pp. 2209-2214 ◽  
Author(s):  
Jacob Golenser ◽  
Shoshana Frankenburg ◽  
Tirtsa Ehrenfreund ◽  
Abraham J. Domb

ABSTRACT In this study, we tested the efficacy of amphotericin B (AmB)-arabinogalactan (AmB-AG) conjugates for the treatment of experimental leishmaniasis. Chemical conjugation of AmB to a water-soluble, biodegradable, and biocompatible polymer could present many advantages over presently available AmB formulations. Two conjugates were tested, a reduced (rAmB-AG) form and an unreduced (uAmB-AG) form. In vitro, the drug concentrations which lower the values of parasites (for promastigotes) or infected macrophages (for amastigotes) to 50% of the untreated values (ED50s) of uAmB-AG and rAmB-AG were 0.19 and 0.34 μg/ml, respectively, forLeishmania major promastigotes and 0.17 and 0.31 μg/ml, respectively, for amastigotes. The effect on Leishmania infantum-infected macrophages was more marked, with ED50s of 0.035 μg/ml for rAmB-AG and 0.027 μg/ml for uAmB-AG. In in vivo experiments, BALB/c mice injected with L. major were treated from day 2 onwards on alternate days for 2 weeks. Both conjugates, as well as liposomal AmB (all at 6 mg/kg of body weight) and Fungizone (1 mg/kg), significantly delayed the appearance of lesions compared to that in untreated mice. In addition, both conjugates, but not liposomal AmB, were significantly more effective than Fungizone. Subcutaneous injection of the conjugates (6 mg/kg) was significantly more effective than liposomal AmB in delaying the appearance of lesions. Higher AmB concentrations of up to 12 mg/kg could be administered by this route. When an established infection was treated, uAmB-AG was somewhat more effective than liposomal AmB. In summary, water-soluble polymeric AmB derivatives were found effective and safe for the treatment of leishmanial infections. The conjugates, which are stable and can be produced relatively cheaply (compared to lipid formulations), can be used in the future for the treatment of leishmaniasis infections.


Sign in / Sign up

Export Citation Format

Share Document