scholarly journals Interaction between Posaconazole and Amphotericin B in Concomitant Treatment against Candida albicans In Vivo

2005 ◽  
Vol 49 (2) ◽  
pp. 638-642 ◽  
Author(s):  
Anthony Cacciapuoti ◽  
Maya Gurnani ◽  
Judith Halpern ◽  
Christine Norris ◽  
Reena Patel ◽  
...  

ABSTRACT The interaction of posaconazole and amphotericin B was evaluated in concomitant treatment of Candida albicans systemic infections in immunocompetent mice by using four strains of C. albicans with different susceptibilities to fluconazole. Posaconazole and amphotericin B were each tested at four dose levels alone and in all possible combinations against each C. albicans strain. Survival curves of mice treated with combinations of posaconazole and amphotericin B were statistically compared with those of mice treated with the component monotherapies. Of the 64 total combinations evaluated against the C. albicans strains (16 combinations per strain), 20.3% were more effective in prolonging mouse survival than both of the monotherapies, 45.3% were more effective than one of the monotherapies, and 32.8% were similar to both monotherapies. No evidence of antagonism was observed between posaconazole and amphotericin B in this mouse model, consistent with in vitro results against the same strains.

1998 ◽  
Vol 42 (1) ◽  
pp. 147-150 ◽  
Author(s):  
John R. Graybill ◽  
Laura K. Najvar ◽  
Annette Fothergill ◽  
Thomas Hardin ◽  
Michael Rinaldi ◽  
...  

ABSTRACT KY-62 is a water-soluble analog of amphotericin B. In vitro testing of five clinical isolates of Candida albicans showed KY-62 to have potency similar to that of amphotericin B. KY-62 was administered to mice infected intravenously with C. albicans. In vivo, KY-62 was effective in immunocompetent mice, with potency similar to that of amphotericin B. KY-62 was well tolerated up to 30 mg/kg of body weight per dose, an amount that would be lethal with amphotericin B. KY-62 was less effective in mice rendered neutropenic with 5-fluorouracil. The addition of flucytosine had little effect. KY-62 may have potential for clinical development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christine Dunker ◽  
Melanie Polke ◽  
Bianca Schulze-Richter ◽  
Katja Schubert ◽  
Sven Rudolphi ◽  
...  

AbstractThe ability of the fungal pathogen Candida albicans to undergo a yeast-to-hypha transition is believed to be a key virulence factor, as filaments mediate tissue damage. Here, we show that virulence is not necessarily reduced in filament-deficient strains, and the results depend on the infection model used. We generate a filament-deficient strain by deletion or repression of EED1 (known to be required for maintenance of hyphal growth). Consistent with previous studies, the strain is attenuated in damaging epithelial cells and macrophages in vitro and in a mouse model of intraperitoneal infection. However, in a mouse model of systemic infection, the strain is as virulent as the wild type when mice are challenged with intermediate infectious doses, and even more virulent when using low infectious doses. Retained virulence is associated with rapid yeast proliferation, likely the result of metabolic adaptation and improved fitness, leading to high organ fungal loads. Analyses of cytokine responses in vitro and in vivo, as well as systemic infections in immunosuppressed mice, suggest that differences in immunopathology contribute to some extent to retained virulence of the filament-deficient mutant. Our findings challenge the long-standing hypothesis that hyphae are essential for pathogenesis of systemic candidiasis by C. albicans.


2001 ◽  
Vol 45 (2) ◽  
pp. 485-494 ◽  
Author(s):  
Arnold Louie ◽  
Pamela Kaw ◽  
Partha Banerjee ◽  
Weiguo Liu ◽  
George Chen ◽  
...  

ABSTRACT In vitro time-kill studies and a rabbit model of endocarditis and pyelonephritis were used to define the impact that the order of exposure of Candida albicans to fluconazole (FLC) and amphotericin B (AMB), as sequential and combination therapies, had on the susceptibility of C. albicans to AMB and on the outcome. The contribution of FLC-induced resistance to AMB for C. albicans also was assessed. In vitro, AMB monotherapy rapidly killed each of four C. albicans strains; FLC alone was fungistatic. Preincubation of these fungi with FLC for 18 h prior to exposure to AMB decreased their susceptibilities to AMB for 8 to >40 h. Induced resistance to AMB was transient, but the duration of resistance increased with the length of FLC preincubation. Yeast sequentially incubated with FLC followed by AMB plus FLC (FLC→AMB+FLC) showed fungistatic growth kinetics similar to that of fungi that were exposed to FLC alone. This antagonistic effect persisted for at least 24 h. Simultaneous exposure of C. albicans to AMB and FLC [AMB+FLC(simult)] demonstrated activity similar to that with AMB alone for AMB concentrations of ≥1 μg/ml; antagonism was seen using an AMB concentration of 0.5 μg/ml. The in vitro findings accurately predicted outcomes in our rabbit infection model. In vivo, AMB monotherapy and treatment with AMB for 24 h followed by AMB plus FLC (AMB→AMB+FLC) rapidly sterilized kidneys and cardiac vegetations. AMB+FLC(simult) and FLC→AMB treatments were slower in clearing fungi from infected tissues. FLC monotherapy and FLC→AMB+FLC were both fungistatic and were the least active regimens. No adverse interaction was observed between AMB and FLC for the AMB→FLC regimen. However, FLC→AMB treatment was slower than AMB alone in clearing fungi from tissues. Thus, our in vitro and in vivo studies both demonstrate that preexposure of C. albicans to FLC reduces fungal susceptibility to AMB. The length of FLC preexposure and whether AMB is subsequently used alone or in combination with FLC determine the duration of induced resistance to AMB.


2006 ◽  
Vol 50 (7) ◽  
pp. 2587-2590 ◽  
Author(s):  
Anthony Cacciapuoti ◽  
Judith Halpern ◽  
Cara Mendrick ◽  
Christine Norris ◽  
Reena Patel ◽  
...  

ABSTRACT The interaction of posaconazole and caspofungin was evaluated in concomitant treatment of Aspergillus fumigatus (two strains) or A. flavus (one strain) systemic infections in immunocompetent mice. Survival curves for mice treated with the combinations were compared statistically with those for mice treated with the component monotherapies. No antagonism was observed.


2002 ◽  
Vol 46 (5) ◽  
pp. 1240-1245 ◽  
Author(s):  
Justina Y. Ju ◽  
Cynthia Polhamus ◽  
Kieren A. Marr ◽  
Steven M. Holland ◽  
John E. Bennett

ABSTRACT Candida glabrata is the second leading cause of adult candidemia, resulting in high mortality. Amphotericin B is considered the treatment of choice, while the efficacy of fluconazole is controversial and caspofungin efficacy is unknown. To ascertain drug efficacy in vivo, the utility of a murine model of C. glabrata infection was investigated. C. glabrata was found to cause progressive, lethal infection when injected intravenously into C57BL/6 mice with reduced oxidative microbicidal capacity due to knockout of the p47phox gene. Spleen and kidney organ CFU counts were determined in groups of mice 2 days after the mice completed 6 days of daily intraperitoneal drug treatment, which began on the day of infection. Daily injections of fluconazole at 80 mg/kg did not reduce spleen or kidney CFU counts after infection with C. glabrata strains having in vitro fluconazole MICs of 2, 32, or 256 μg/ml compared to saline-treated controls. However, this fluconazole regimen reduced spleen CFU counts in mice infected with Candida albicans, an infection that is known to be responsive to fluconazole. Caspofungin at 5 mg/kg and amphotericin B at 5 mg/kg were both effective in reducing fungal burden in spleens and kidneys of C. glabrata-infected mice. Ten mice treated for 6 days with caspofungin at 1 mg/kg survived for 15 days, though all 10 saline-injected mice died or were so ill that they had to be sacrificed by 96 h postinfection. This murine model provided evidence of the efficacy of amphotericin B and caspofungin but not of fluconazole against C. glabrata infection.


2008 ◽  
Vol 7 (10) ◽  
pp. 1640-1648 ◽  
Author(s):  
Nozomu Hanaoka ◽  
Yukie Takano ◽  
Kazutoshi Shibuya ◽  
Hajime Fugo ◽  
Yoshimasa Uehara ◽  
...  

ABSTRACT Protein phosphatases are critical for the regulation of many cellular processes. Null mutants of 21 putative protein phosphatases of Candida albicans were constructed by consecutive allele replacement using the URA3 and ARG4 marker genes. A simple silkworm model of C. albicans infection was used to screen the panel of mutants. Four null mutant (cmp1Δ, yvh1Δ, sit4Δ, and ptc1Δ) strains showed attenuated virulence in the silkworm model relative to that of control and parental strains. Three of the mutants, the cmp1Δ, yvh1Δ, and sit4Δ mutants, had previously been identified as affecting virulence in a conventional mouse model, indicating the validity of the silkworm model screen. Disruption of the putative protein phosphatase gene PTC1 of C. albicans, which has 52% identity to the Saccharomyces cerevisiae type 2C protein phosphatase PTC1, significantly reduced virulence in the silkworm model. The mutant was also avirulent in a mouse model of disseminated candidiasis. Reintroducing either of the C. albicans PTC1 alleles into the disruptant strain, using a cassette containing either allele under the control of a constitutive ACT1 promoter, restored virulence in both infection models. Characterization of ptc1Δ revealed other phenotypic traits, including reduced hyphal growth in vitro and in vivo, and reduced extracellular proteolytic activity. We conclude that PTC1 may contribute to pathogenicity in C. albicans.


2006 ◽  
Vol 51 (2) ◽  
pp. 510-520 ◽  
Author(s):  
Jeniel Nett ◽  
Leslie Lincoln ◽  
Karen Marchillo ◽  
Randall Massey ◽  
Kathleen Holoyda ◽  
...  

ABSTRACT Biofilms are microbial communities, embedded in a polymeric matrix, growing attached to a surface. Nearly all device-associated infections involve growth in the biofilm life style. Biofilm communities have characteristic architecture and distinct phenotypic properties. The most clinically important phenotype involves extraordinary resistance to antimicrobial therapy, making biofilm infections very difficulty to cure without device removal. The current studies examine drug resistance in Candida albicans biofilms. Similar to previous reports, we observed marked fluconazole and amphotericin B resistance in a C. albicans biofilm both in vitro and in vivo. We identified biofilm-associated cell wall architectural changes and increased β-1,3 glucan content in C. albicans cell walls from a biofilm compared to planktonic organisms. Elevated β-1,3 glucan levels were also found in the surrounding biofilm milieu and as part of the matrix both from in vitro and in vivo biofilm models. We thus investigated the possible contribution of β-glucans to antimicrobial resistance in Candida albicans biofilms. Initial studies examined the ability of cell wall and cell supernatant from biofilm and planktonic C. albicans to bind fluconazole. The cell walls from both environmental conditions bound fluconazole; however, four- to fivefold more compound was bound to the biofilm cell walls. Culture supernatant from the biofilm, but not planktonic cells, bound a measurable amount of this antifungal agent. We next investigated the effect of enzymatic modification of β-1,3 glucans on biofilm cell viability and the susceptibility of biofilm cells to fluconazole and amphotericin B. We observed a dose-dependent killing of in vitro biofilm cells in the presence of three different β-glucanase preparations. These same concentrations had no impact on planktonic cell viability. β-1,3 Glucanase markedly enhanced the activity of both fluconazole and amphotericin B. These observations were corroborated with an in vivo biofilm model. Exogenous biofilm matrix and commercial β-1,3 glucan reduced the activity of fluconazole against planktonic C. albicans in vitro. In sum, the current investigation identified glucan changes associated with C. albicans biofilm cells, demonstrated preferential binding of these biofilm cell components to antifungals, and showed a positive impact of the modification of biofilm β-1,3 glucans on drug susceptibility. These results provide indirect evidence suggesting a role for glucans in biofilm resistance and present a strong rationale for further molecular dissection of this resistance mechanism to identify new drug targets to treat biofilm infections.


2002 ◽  
Vol 46 (7) ◽  
pp. 2310-2312 ◽  
Author(s):  
Qiu N. Sun ◽  
Laura K. Najvar ◽  
Rosie Bocanegra ◽  
David Loebenberg ◽  
John R. Graybill

ABSTRACT The in vivo activities of posaconazole, itraconazole, and amphotericin B in neutropenic mice with zygomycosis were compared. The in vitro MICs of posaconazole and itraconazole for the strains of Mucor spp. used in this study ranged from 0.125 to 8 μg/ml and 0.25 to 8 μg/ml, respectively. The in vitro MIC range for amphotericin B is 0.125 to 0.25 μg/ml. At twice-daily doses of ≥15 mg/kg of body weight, posaconazole prolonged the survival of the mice and reduced tissue burden.


1996 ◽  
Vol 40 (10) ◽  
pp. 2237-2242 ◽  
Author(s):  
K Hata ◽  
J Kimura ◽  
H Miki ◽  
T Toyosawa ◽  
T Nakamura ◽  
...  

ER-30346 is a novel oral triazole with a broad spectrum of potent activity against a wide range of fungi. ER-30346, with MICs at which 90% of the strains tested are inhibited (MIC90s) ranging from 0.025 to 0.78 microgram/ml, was 4 to 32 times more active than itraconazole, fluconazole, and amphotericin B against Candida albicans, Candida parapsilosis, and Candida glabrata. Against Candida tropicalis, ER-30346, with an MIC90 of 12.5 micrograms/ml, was 2 to > 8 times more active than itraconazole and fluconazole, but was 16 times less active than amphotericin B. ER-30346 (MIC90, 0.78 microgram/ml) was four to eight times more active than fluconazole and amphotericin B and had activity comparable to that of itraconazole against Trichosporon beigelli. The MIC90s of ER-30346 were 0.10 microgram/ml for Cryptococcus neoformans and 0.39 microgram/ml for Aspergillus fumigatus. ER-30346 was 2 to 8 times more active than itraconazole and amphotericin B and 32 to > 256 times more active than fluconazole. ER-30346 also showed good activity against dermatophytes, with MICs ranging from 0.05 to 0.39 microgram/ml, and its activity was comparable to or 2 to 16 times higher than those of itraconazole and amphotericin B and > 32 times higher than that of fluconazole. In vivo activity was evaluated with systemic infections in mice. Against systemic candidiasis and cryptococcosis, ER-30346 was comparable in efficacy to fluconazole and was more effective than itraconazole. Of the drugs tested, ER-30346 was the most effective drug against systemic aspergillosis. We studied the levels of ER-30346 in mouse plasma. The maximum concentration of drug in plasma and the area under the concentration-time curve for ER-30346 showed good linearity over a range of doses from 2 to 40 mg/kg of body weight.


2010 ◽  
Vol 56 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Yudum Tiftikcioğlu Deren ◽  
Şengül Özdek ◽  
Ayşe Kalkanci ◽  
Nalan Akyürek ◽  
Berati Hasanreisoğlu

The goal of this study was to compare in vitro and in vivo efficacy of moxifloxacin and liposomal amphotericin B (Amp-B) monotherapies and combination treatment against Candida albicans in an exogenous endophthalmitis model in rabbit eyes. Microplate dilution tests and checkerboard analysis were performed to detect in vitro efficacies. Endophthalmitis was induced by intravitreal injection of C. albicans in 40 rabbit eyes with simultaneous intravitreal drug injection according to prophylactic treatment groups. Group 1 (control group) received 0.1 mL of balanced salt solution, group 2 (moxi group) 100 µg moxifloxacin/0.1 mL, group 3 (Amp-B group) 10 µg liposomal Amp-B/0.1 mL, and group 4 (combi group) both 100 µg moxifloxacin/0.05 mL and 10 µg liposomal Amp-B/0.05 mL intravitreally. Clinical examination, quantitative analysis of microorganisms, and histopathologic examination were performed as in vivo studies. The minimum inhibitory concentration of liposomal Amp-B against C. albicans was found to be 1 µg/mL. Moxifloxacin showed no inhibition of in vitro C. albicans growth. The minimum inhibitory concentration values of liposomal Amp-B for C. albicans were reduced two- to eightfold with increasing concentrations of moxifloxacin in vitro. In vivo, there was no C. albicans growth in the combi group (zero of eight eyes), whereas three eyes (37.5%) showed growth in the Amp-B group. Vitreous inflammation, retinal detachment, focal retinal necrosis, and outer nuclear layer loss were found to be lower in the moxi group compared with the control group. Ganglion cell and inner nuclear layer loss was observed in all eyes (100%) in both the moxi and combi groups, whereas only in 25% (two of eight eyes) in the Amp-B group. Moxifloxacin strongly augments the efficacy of liposomal Amp-B against C. albicans in vitro, although it has no in vitro antifungal activity when used alone. It is interesting that we found a synergistic effect for in vitro tests but failed to demonstrate it in vivo. When 100 µg moxifloxacin/0.1 mL is given intravitreally, it has some toxic effects that are limited to the inner retinal layers.


Sign in / Sign up

Export Citation Format

Share Document