scholarly journals In Vivo Activity of Posaconazole against Mucor spp. in an Immunosuppressed-Mouse Model

2002 ◽  
Vol 46 (7) ◽  
pp. 2310-2312 ◽  
Author(s):  
Qiu N. Sun ◽  
Laura K. Najvar ◽  
Rosie Bocanegra ◽  
David Loebenberg ◽  
John R. Graybill

ABSTRACT The in vivo activities of posaconazole, itraconazole, and amphotericin B in neutropenic mice with zygomycosis were compared. The in vitro MICs of posaconazole and itraconazole for the strains of Mucor spp. used in this study ranged from 0.125 to 8 μg/ml and 0.25 to 8 μg/ml, respectively. The in vitro MIC range for amphotericin B is 0.125 to 0.25 μg/ml. At twice-daily doses of ≥15 mg/kg of body weight, posaconazole prolonged the survival of the mice and reduced tissue burden.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1558-1558 ◽  
Author(s):  
Shouyun Li ◽  
Shuang Liu ◽  
Shuying Chen ◽  
Yirui Chen ◽  
Ying Wang ◽  
...  

Abstract Introduction: TBLR1-RARα is the tenth fusion gene of acute promyelocytic leukemia (APL) first identified in a rare case of APL with t(3;17)(q26;q21) chromosomal translocation in our previous study. The characteristics of its basic structure and functions had been clarified in our previous study. In this study, we successfully established a novel TBLR1-RARα leukemia mouse model (TR mouse) which fully recapitulated the most relevant features of human APLs. The therapeutic effects of retinoic acid (ATRA), arsenic trioxide (As2O3), cytarabine (Ara-C) and histone deacetylase inhibitors (HDACi) on TR mice were examined. The differentially expressed genes (DEGs) between TR mice and normal mice were compared to explore the possible mechanisms and better therapeutic targets for this kind of APL. Methods: pMSCV-TBLR1-RARα-Flag-IRES-GFP (MSCV-TR) and pMSCV-IRES-GFP (vehicle) retroviral plasmids were constructed and transfected 293T packaging cells to produce retroviruses. Lin- cells from C57BL/6 mice bone marrow were purified and infected with MSCV-TR and vehicle retroviral supernatant. For in vitro assay, the GFP+ lin- cells sorted and incubated with or without different concentrations of ATRA were analyzed for the differentiation and proliferation capacity by cell morphology, myeloid markers (CD11b and GR-1) and colony formation assay. For the in vivo experiment, GFP+ lin- cells transfected with indicated retroviral vectors were injected intravenously to lethally irradiated C57BL/6 mice to establish an APL mouse model. Cell surface markers were analyzed by flow cytometry. In treatment assays, GFP+ spleen cells from TR leukemia mice were injected intravenously into recipient mice. The mice were randomly separated into groups and received different treatment with ATRA, As2O3, As2O3 in combination with ATRA, Ara-C, Ara-C in combination with ATRA, chidamide and NL101, respectively. The percentage of GFP+ cells in peripheral blood and body weight were measured dynamically. The survival time of every group was recorded and compared. RNA-seq assay was used to identify DEGs between TR mice and normal mice. Results: In vitro assays indicated that TBLR1-RARα could either block the differentiation of HSCs at a relatively early stage or enhanced the clonogenic potential of cells. The TBLR1-RARα leukemia mouse model was successfully established. During the ten-month observational period, 3 out of 15 mice transplanted with TBLR1-RARα expressing cells developed an APL-like disease. Development of leukemia was not observed in any of the mice in control group. All the leukemia mice had a body weight loss as well as splenomegaly and hepatomegaly. The phenotype analysis revealed that the progenitor markers Sca-1, CD34 and C-kit were positive, the myeloid lineage markers Gr-1 and CD11b were also positive, erythroid lineage marker Ter119 was weekly positive, but the lymphatic lineage marker B220, CD3,CD4 and CD8 were all negative. TR mice treated with 1.5-2.5 mg/kg ATRA alone or together with 2.0 mg/kg As2O3 didn't survive longer than that of control group, although in vitro differentiation experiment showed that the leukemia cells were sensitive to ATRA. Leukemic mice receiving Ara-C treatment had a much longer survive time. Surprisingly, HDAC inhibitors (12.5 and 25 mg/kg chidamide and 30 mg/kg NL-101) could significantly prolong the survival time of TR mice. Thousands of DEGs had been identified between TR mice and wild type mice, which were widely involved in multiple pathways and participated in various biological functions. Conclusion: The TBLR1-RARα leukemia mouse model was successfully established for the first time, and its main characteristics were clarified. Although the leukemia cells were sensitive to ATRA in vitro, TR mice didn't benefit from ATRA or As2O3 treatment in vivo. Besides Ara-C, HDAC inhibitors, such as chidamide and NL-101 exhibited potency therapeutic values for TR mice, which provided a new strategy for this kind of refractory APL. What' more, lots of genes that might be related with the process of leukemogenesis and new therapeutic targets for TR leukemia were identified. This model would serve as a versatile tool to study the mechanisms of leukemogenesis and help to design better strategies for APLs in further studies. Disclosures No relevant conflicts of interest to declare.


2005 ◽  
Vol 49 (12) ◽  
pp. 4989-4992 ◽  
Author(s):  
Francesco Barchiesi ◽  
Elisabetta Spreghini ◽  
Serena Tomassetti ◽  
Daniela Arzeni ◽  
Daniele Giannini ◽  
...  

ABSTRACT We investigated the fungicidal activity of caspofungin (CAS) and amphotericin B (AMB) against 16 clinical isolates of Candida glabrata. The minimum fungicidal concentrations (MFCs) of CAS were similar to those of AMB, ranging from 2.0 to >8.0 μg/ml. Time-kill assays performed on selected isolates showed that AMB was fungicidal at concentrations four times the MIC while CAS was not. A neutropenic-mouse model of disseminated infection was utilized to determine the residual fungal kidney burden. While doses as low as 0.3 and 1 mg/kg of body weight/day of CAS and AMB, respectively, were effective at reducing the counts with respect to controls, organ sterilization was reached when both drugs were administered at 5 mg/kg/day. Our study reveals that, similar to AMB, CAS has the potential for a fungicidal effect in vivo against this difficult-to-treat fungal pathogen.


2002 ◽  
Vol 46 (2) ◽  
pp. 367-370 ◽  
Author(s):  
Yasuki Kamai ◽  
Tamako Harasaki ◽  
Takashi Fukuoka ◽  
Satoshi Ohya ◽  
Katsuhisa Uchida ◽  
...  

ABSTRACT The activity of CS-758 (R-120758), a new triazole antifungal agent, was evaluated and compared with those of fluconazole, itraconazole, and amphotericin B in vitro and with those of fluconazole and itraconazole in vivo. CS-758 exhibited potent in vitro activity against clinically important fungi. The activity of CS-758 against Candida spp. was superior to that of fluconazole and comparable or superior to those of itraconazole and amphotericin B. CS-758 retained potent activity against Candida albicans strains with low levels of susceptibility to fluconazole (fluconazole MIC, 4 to 32 μg/ml). Against Aspergillus spp. and Cryptococcus neoformans, the activity of CS-758 was at least fourfold superior to those of the other drugs tested. CS-758 also exhibited potent in vivo activity against murine systemic infections caused by C. albicans, C. neoformans, Aspergillus fumigatus, and Aspergillus flavus. The 50% effective doses against these infections were 0.41 to 5.0 mg/kg of body weight. These results suggest that CS-758 may be useful in the treatment of candidiasis, cryptococcosis, and aspergillosis.


2001 ◽  
Vol 45 (8) ◽  
pp. 2383-2385 ◽  
Author(s):  
Marianne Kretschmar ◽  
Gernot Geginat ◽  
Thomas Bertsch ◽  
Simon Walter ◽  
Herbert Hof ◽  
...  

ABSTRACT Liposomal amphotericin B was immunosuppressive on target cell lysis in vitro and on protection mediated by cytotoxic CD8 T cells in murine listeriosis. When dosages usually used for therapy in humans were compared, the immunosuppressive effect of 5 mg of liposomal amphotericin B/kg of body weight/day was similar to that of standard amphotericin B at 1 mg/kg/day, but a dosage of liposomal amphotericin B of 1 mg/kg/day was not suppressive in vivo.


1998 ◽  
Vol 42 (1) ◽  
pp. 147-150 ◽  
Author(s):  
John R. Graybill ◽  
Laura K. Najvar ◽  
Annette Fothergill ◽  
Thomas Hardin ◽  
Michael Rinaldi ◽  
...  

ABSTRACT KY-62 is a water-soluble analog of amphotericin B. In vitro testing of five clinical isolates of Candida albicans showed KY-62 to have potency similar to that of amphotericin B. KY-62 was administered to mice infected intravenously with C. albicans. In vivo, KY-62 was effective in immunocompetent mice, with potency similar to that of amphotericin B. KY-62 was well tolerated up to 30 mg/kg of body weight per dose, an amount that would be lethal with amphotericin B. KY-62 was less effective in mice rendered neutropenic with 5-fluorouracil. The addition of flucytosine had little effect. KY-62 may have potential for clinical development.


2019 ◽  
Author(s):  
Jason A. West ◽  
Soumitra S. Ghosh ◽  
David G. Parkes ◽  
Anastasia Tsakmaki ◽  
Rikke V. Grønlund ◽  
...  

ABSTRACTObjectiveCombinatorial gut hormone therapy is one of the more promising strategies for identifying improved treatments for metabolic disease. Many approaches combine the established benefits of glucagon-like peptide-1 (GLP-1) agonism with one or more additional molecules with the aim of improving metabolic outcomes. Recent attention has been drawn to the glucose-dependent insulinotropic polypeptide (GIP) system due to compelling pre-clinical evidence describing the metabolic benefits of antagonising the GIP receptor (GIPR). We rationalised that benefit might be accrued from combining GIPR antagonism with GLP-1 agonism. To this end we investigated the metabolic effects of co-administration of previously reported peptide-based GIPR antagonists with the GLP-1 agonist liraglutide.MethodsTwo GIPR peptide antagonists, GIPA-1 (mouse GIP(3-30)NH2) and GIPA-2 (NαAc-K10[γEγE-C16]-Arg18-hGIP(5–42)), were pharmacologically characterised in vitro in an assay measuring cAMP production in CHO-K1 cells overexpressing the mouse GIPR. These peptides were then characterised in vivo in lean mice for their effect on oral glucose tolerance, as well as their ability to antagonize exogenous GIP action. Finally, a mouse model of diet-induced obesity (DIO) was used to investigate the potential metabolic benefits of chronic dosing of peptide-based GIPR antagonists, alone or in combination with liraglutide.ResultsIn vitro, both GIPR peptides exhibited potent antagonistic properties, with GIPA-2 being the more potent of the two. Acute in vivo administration of GIPA-1 during an oral glucose tolerance test (OGTT) had negligible effects on glucose tolerance and circulated insulin in lean mice. In contrast, GIPA-2 impaired glucose tolerance and attenuated circulating insulin levels, with offsetting effects on glycemia noted with co-administration with exogenous mouse GIP, suggesting true antagonism via GIPA-2 at the GIP receptor. Chronic administration studies in a DIO mouse model showed expected effects of GLP-1 agonism (via liraglutide), lowering food intake, body weight, fasting blood glucose and plasma insulin concentrations while improving glucose sensitivity, whereas delivery of either GIPR antagonist alone had negligible effects on these parameters. Interestingly, chronic dual therapy with the GIPR antagonists and GLP-1 showed separation from single intervention arms though augmented insulin sensitizing effects (modestly lowering insulin and HOMA-IR) and lowering plasmas triglycerides and free-fatty acids, with more notable effects observed with GIPA-1 compared to GIPA-2.ConclusionWe conclude that, in contrast to the well-documented effects of GLP-1R agonism, systemic administration of peptide-based GIPR antagonists demonstrate minimal benefit on metabolic parameters in DIO mice, exhibiting no major effects on body weight, food intake and glycaemic parameters. However, the co-administration of both a GIPR antagonist together with a GLP1 agonist uncovers interesting synergistic and beneficial effects on measures of insulin sensitivity, circulating lipids and certain adipose stores that seem influenced by the degree or nature of GIP receptor antagonism.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 269-269 ◽  
Author(s):  
Michael P. Reilly ◽  
Uma Sinha ◽  
Pierrette Andre ◽  
Scott M. Taylor ◽  
Yvonne Pak ◽  
...  

Abstract Heparin-induced thrombocytopenia (HIT), in which patients develop antibodies to complexes formed by heparin and platelet factor 4 (PF4), is the most frequent drug-induced immune thrombocytopenia. Extensive studies in vitro and our previous studies in vivo using a transgenic mouse model of HIT have shown that antibodies reactive with heparin-PF4 complexes lead to FcgRIIa receptor-mediated platelet activation. In this study we investigated whether PRT060318 (PRT318), a novel Syk inhibitor, prevents HIT antibody-mediated platelet activation both in vitro and in vivo. PRT318 at concentrations of 0.3 to 3 μM completely inhibited HIT immune complex (IC)-induced aggregation in both human and transgenic mouse platelets. In the absence of the inhibitor, HIT IC-induced final aggregation was 50–60%. At concentrations of PRT318 less than 0.1 μM, or in the presence of vehicle only, there was no inhibition of aggregation. Aggregation was not inhibited by PRT318 at any concentration when platelets were stimulated by ADP (5–20 μM final concentration). We also show that PRT318 prevents HIT IC-induced thrombocytopenia in vivo using a transgenic mouse HIT model. All mice were treated with KKO, a mouse monoclonal HIT antibody. On days 1 to 4 following antibody injection, the experimental group (n = 13) received orally dosed PRT318 (30 mg/kg body weight) twice a day by gavage while the control group (n = 11) was similarly treated with vehicle only (water). Both experimental and control mice were injected with heparin (1600 U/kg body weight, SQ, once daily). Nadir platelet counts of PRT318-treated mice were significantly higher than control mice (89.8 ± 1.1% of baseline vs. 48.8 ± 6.7%; p = 0.00003). The PRT318 concentration, 2 hrs post dose, in mouse plasma from treated mice was measured as 7.1 μM, consistent with the concentration which blocked FcgRIIa-mediated platelet activation in vitro. These studies demonstrate that Syk inhibitor PRT318 is an active agent in HIT. Figure Figure


2000 ◽  
Vol 44 (10) ◽  
pp. 2895-2896 ◽  
Author(s):  
M. H. Cynamon ◽  
J. L. Carter ◽  
C. M. Shoen

ABSTRACT ABT-773, a new ketolide antimicrobial agent, was evaluated in comparison to clarithromycin (CLA) in vitro against Mycobacterium avium complex (MAC) and in a beige mouse model of disseminated MAC infection. The MICs at which 50 and 90% of the isolates tested were inhibited were 2 and 4 μg/ml, respectively, for CLA and 8 and 16 μg/ml, respectively, for ABT-773. Eight CLA-resistant isolates were found to be resistant to ABT-773 (MICs > 64 μg/ml). In the in vivo study mice were treated with ABT-773 (50, 100, and 200 mg/kg of body weight) or CLA (200 mg/kg). Both ABT-773 (100 and 200 mg/kg) and CLA significantly decreased the viable cell counts in spleens and lungs. ABT-773 (200 mg/kg) and CLA had similar activities in lungs, but the former was more active in spleens.


2005 ◽  
Vol 49 (2) ◽  
pp. 638-642 ◽  
Author(s):  
Anthony Cacciapuoti ◽  
Maya Gurnani ◽  
Judith Halpern ◽  
Christine Norris ◽  
Reena Patel ◽  
...  

ABSTRACT The interaction of posaconazole and amphotericin B was evaluated in concomitant treatment of Candida albicans systemic infections in immunocompetent mice by using four strains of C. albicans with different susceptibilities to fluconazole. Posaconazole and amphotericin B were each tested at four dose levels alone and in all possible combinations against each C. albicans strain. Survival curves of mice treated with combinations of posaconazole and amphotericin B were statistically compared with those of mice treated with the component monotherapies. Of the 64 total combinations evaluated against the C. albicans strains (16 combinations per strain), 20.3% were more effective in prolonging mouse survival than both of the monotherapies, 45.3% were more effective than one of the monotherapies, and 32.8% were similar to both monotherapies. No evidence of antagonism was observed between posaconazole and amphotericin B in this mouse model, consistent with in vitro results against the same strains.


2003 ◽  
Vol 47 (4) ◽  
pp. 1436-1438 ◽  
Author(s):  
Gloria M. González ◽  
Rolando Tijerina ◽  
Laura K. Najvar ◽  
Rosie Bocanegra ◽  
Michael G. Rinaldi ◽  
...  

ABSTRACT Thirty isolates of Pseudallescheria boydii were tested to compare the in vitro activity of posaconazole with those of fluconazole and itraconazole, using NCCLS methods. Posaconazole was evaluated in an immunosuppressed mouse model of disseminated pseudallescheriasis. Posaconazole was more effective than itraconazole and as effective as fluconazole in preventing death and significantly reducing the CFU of P. boydii from tissues.


Sign in / Sign up

Export Citation Format

Share Document