scholarly journals Delivery of the Non-Membrane-Permeative Antibiotic Gentamicin into Mammalian Cells by Using Shigella flexneriMembrane Vesicles

1998 ◽  
Vol 42 (6) ◽  
pp. 1476-1483 ◽  
Author(s):  
Jagath L. Kadurugamuwa ◽  
Terry J. Beveridge

ABSTRACT We developed a model to test whether non-membrane-permeative therapeutic agents such as gentamicin could be delivered into mammalian cells by means of bacterial membrane vesicles. Many gram-negative bacteria bleb off membrane vesicles (MVs) during normal growth, and the quantity of these vesicles can be increased by brief exposure to gentamicin (J. L. Kadurugamuwa and T. J. Beveridge, J. Bacteriol. 177:3998–4008, 1995), which can be entrapped within the MVs. Gentamicin-induced MVs (g-MVs) were isolated from Shigella flexneri and contained 85 ± 2 ng of gentamicin per μg of MV protein. Immunogold electron microscopic labeling of thin sections with antibodies specific to S. flexneri lipopolysaccharide (LPS) demonstrated the adherence and subsequent engulfment of MVs by the human Henle 407 intestinal epithelial cell line. Further incubation of g-MVs with S. flexneri-infected Henle cells revealed that the g-MVs penetrated throughout the infected cells and reduced the intracellular pathogen by ∼1.5 log10 CFU in the first hour of incubation. Antibiotic was detected in the cytoplasms of host cells, indicating the intracellular placement of the drug following the penetration of g-MVs. Soluble antibiotic, added as a fluid to the tissue culture growth medium, had no effect on intracellular bacterial growth, confirming the impermeability of the cell membranes of the tissue to gentamicin. Western blot analysis of MVs with S. flexneri Ipa-specific antibodies demonstrated that the invasion protein antigens IpaB, IpaC, and IpaD were present in MVs. Being bilayered, with outer faces composed of LPS and Ipa proteins, these MVs were readily engulfed by the otherwise impermeable membranes and eventually liberated their contents into the cytoplasmic substance of the host tissue.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreia I. Pimenta ◽  
Nuno Bernardes ◽  
Marta M. Alves ◽  
Dalila Mil-Homens ◽  
Arsenio M. Fialho

AbstractBurkholderia cenocepacia is known for its capacity of adherence and interaction with the host, causing severe opportunistic lung infections in cystic fibrosis patients. In this work we produced Giant Plasma Membrane Vesicles (GPMVs) from a bronchial epithelial cell line and validated their use as a cell-like alternative to investigate the steps involved in the adhesion process of B. cenocepacia. RNA-sequencing was performed and the analysis of the B. cenocepacia K56-2 transcriptome after the first contacts with the surface of host cells allowed the recognition of genes implicated in bacterial adaptation and virulence-associated functions. The sensing of host membranes led to a transcriptional shift that caused a cascade of metabolic and physiological adaptations to the host specific environment. Many of the differentially expressed genes encode proteins related with central metabolic pathways, transport systems, cellular processes, and virulence traits. The understanding of the changes in gene expression that occur in the early steps of infection can uncover new proteins implicated in B. cenocepacia-host cell adhesion, against which new blocking agents could be designed to control the progression of the infectious process.


Author(s):  
U. G. Munderloh ◽  
S. F. Hayes ◽  
J. Cummings ◽  
T. J. Kurtti

Spotted fever group (SFG) rickettsiae are obligate intracellular prokaryotes that include tick-borne pathogens of animals and man as well as organisms that live in symbiotic association with their tick hosts. A striking feature of the behavior of pathogenic rickettsiae in the vertebrate is their ability to quickly disseminate between cells from the original site of entry shortly after infection, and before severe lesions are detected. Similarly, ticks become systemically infected with SFG rickettsiae, indicating that an efficient mechanism of dispersal also exists in the vector. This is accomplished despite the fact that rickettsiae are not motile.Kadurugamuwa et al. (1991) have used light and electron microscopy to show that Shigella flexneri utilize host cytoskeletal components to travel through cytoplasmic extensions and penetrate into neighboring cells. Using mammalian cells cultured in vitro, Heinzen et al. (1993) have demonstrated that SFG rickettsiae cause host cell actin polymerization at one rickettsial pole causing them to be propelled through the cytoplasm, and to transfer rapidly from cell to cell.


1962 ◽  
Vol 13 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Robert C. Buck ◽  
James M. Tisdale

The process of cytoplasmic cleavage has been studied in thin sections of rat erythroblasts and the cells of mouse leukemia and Walker 256 carcinoma of the rat. The development of the cleavage furrow begins in relation to the mid-body, which, earlier, appears on the equatorial plane in association with the continuous fibers of the spindle. The earliest evidence of a cleavage furrow is the presence of a vesicle or vesicles close to the mid-body. Subsequently, many smaller vesicles are seen in the equatorial plane. The cleavage furrow probably develops by the fusion of these vesicles so that a new plasma membrane is formed between the daughter cells, and extends from the telophase intercellular bridge to the cell margin. During the stage of formation of the vesicles, cisternae, believed to be part of the endoplasmic reticulum, assume an intimate relationship with the cleavage plane, and they may perhaps be involved in the formation of the vesicles.


1998 ◽  
Vol 66 (1) ◽  
pp. 336-342 ◽  
Author(s):  
Kenneth W. Bayles ◽  
Carla A. Wesson ◽  
Linda E. Liou ◽  
Lawrence K. Fox ◽  
Gregory A. Bohach ◽  
...  

ABSTRACT We examined the invasion of an established bovine mammary epithelial cell line (MAC-T) by a Staphylococcus aureusmastitis isolate to study the potential role of intracellular survival in the persistence of staphylococcal infections. S. aureuscells displayed dose-dependent invasion of MAC-T cells and intracellular survival. An electron microscopic examination of infected cells indicated that the bacteria induced internalization via a mechanism involving membrane pseudopod formation and then escaped into the cytoplasm following lysis of the endosomal membrane. Two hours after the internalization of S. aureus, MAC-T cells exhibited detachment from the matrix, rounding, a mottled cell membrane, and vacuolization of the cytoplasm, all of which are indicative of cells undergoing programmed cell death (apoptosis). By 18 h, the majority of the MAC-T cell population exhibited an apoptotic morphology. Other evidence for apoptosis was the generation of MAC-T cell DNA fragments differing in size by increments of approximately 180 bp and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling of the fragmented nuclear DNA of the infected host cells. These results demonstrate that after internalizationS. aureus escapes the endosome and induces apoptosis in nonprofessional phagocytes.


Author(s):  
J. T. Stasny ◽  
R. C. Burns ◽  
R. W. F. Hardy

Structure-functlon studies of biological N2-fixation have correlated the presence of the enzyme nitrogenase with increased numbers of intracytoplasmic membranes in Azotobacter. However no direct evidence has been provided for the internal cellular localization of any nitrogenase. Recent advances concerned with the crystallizatiorTand the electron microscopic characterization of the Mo-Fe protein component of Azotobacter nitrogenase, prompted the use of this purified protein to obtain antibodies (Ab) to be conjugated to electron dense markers for the intracellular localization of the protein by electron microscopy. The present study describes the use of ferritin conjugated to goat antitMo-Fe protein immunoglobulin (IgG) and the observations following its topical application to thin sections of N2-grown Azotobacter.


Author(s):  
J. P. Petrali ◽  
E. J. Donati ◽  
L. A. Sternberger

Specific contrast is conferred to subcellular antigen by applying purified antibodies, exhaustively labeled with uranium under immunospecific protection, to ultrathin sections. Use of Seligman’s principle of bridging osmium to metal via thiocarbohydrazide (TCH) intensifies specific contrast. Ultrathin sections of osmium-fixed materials were stained on the grid by application of 1) thiosemicarbazide (TSC), 2) unlabeled specific antiserum, 3) uranium-labeled anti-antibody and 4) TCH followed by reosmication. Antigens to be localized consisted of vaccinia antigen in infected HeLa cells, lysozyme in monocytes of patients with monocytic or monomyelocytic leukemia, and fibrinogen in the platelets of these leukemic patients. Control sections were stained with non-specific antiserum (E. coli).In the vaccinia-HeLa system, antigen was localized from 1 to 3 hours following infection, and was confined to degrading virus, the inner walls of numerous organelles, and other structures in cytoplasmic foci. Surrounding architecture and cellular mitochondria were unstained. 8 to 14 hours after infection, antigen was localized on the outer walls of the viral progeny, on cytoplasmic membranes, and free in the cytoplasm. Staining of endoplasmic reticulum was intense and focal early, and weak and diffuse late in infection.


Author(s):  
Glen B. Haydon

High resolution electron microscopic study of negatively stained macromolecules and thin sections of tissue embedded in a variety of media are difficult to interpret because of the superimposed phase image granularity. Although all of the information concerning the biological structure of interest may be present in a defocused electron micrograph, the high contrast of large phase image granules produced by the substrate makes it impossible to distinguish the phase ‘points’ from discrete structures of the same dimensions. Theory predicts the findings; however, it does not allow an appreciation of the actual appearance of the image under various conditions. Therefore, though perhaps trivial, training of the cheapest computer produced by mass labor has been undertaken in order to learn to appreciate the factors which affect the appearance of the background in high resolution electron micrographs.


Author(s):  
Dr. G. Kaemof

A mixture of polycarbonate (PC) and styrene-acrylonitrile-copolymer (SAN) represents a very good example for the efficiency of electron microscopic investigations concerning the determination of optimum production procedures for high grade product properties.The following parameters have been varied:components of charge (PC : SAN 50 : 50, 60 : 40, 70 : 30), kind of compounding machine (single screw extruder, twin screw extruder, discontinuous kneader), mass-temperature (lowest and highest possible temperature).The transmission electron microscopic investigations (TEM) were carried out on ultra thin sections, the PC-phase of which was selectively etched by triethylamine.The phase transition (matrix to disperse phase) does not occur - as might be expected - at a PC to SAN ratio of 50 : 50, but at a ratio of 65 : 35. Our results show that the matrix is preferably formed by the components with the lower melting viscosity (in this special case SAN), even at concentrations of less than 50 %.


Author(s):  
P.W. Coates ◽  
E.A. Ashby ◽  
L. Krulich ◽  
A. Dhariwal ◽  
S. McCann

The morphologic effects on somatotrophs of crude sheep hypothalamic extract prepared from stalk-median eminence were studied by electron microscopy in conjunction with concurrently run bioassays performed on the same tissue samples taken from young adult male Sherman rats.Groups were divided into uninjected controls and injected experimentals sacrificed at 5', 15', and 30' after injection. Half of each anterior pituitary was prepared for electron microscopic investigation, the other half for bioassay. Fixation using collidine buffered osmium tetroxide was followed by dehydration and embedment in Maraglas. Uranyl acetate and lead citrate were used as stains. Thin sections were examined in a Philips EM 200.Somatotrophs from uninjected controls appeared as described in the literature (Fig. 1). In addition to other components, these cells contained moderate numbers of spherical, electron-dense, membrane-bound granules approximately 350 millicrons in diameter.


Author(s):  
R.E. Nordquist ◽  
R.M. Wasik ◽  
P.J. Riggs ◽  
P.L. Munson ◽  
F.B. Schafer

An infiltrating ductal cell carcinoma was removed from the breast of a postmenopausal Caucasian female. The excised tissue was divided into three parts; one part for electron microscopy, one part for tissue culture and the remainder frozen for immunological studies.The tissue for culture was minced finely with sterile razor blades and cultured in Falcon flasks containing Eagel's MEM supplemented with 10% heat denatured fetal calf serum. The tissue for electron microscopy was fixed in 6.25% glutaraldehyde in 0.1 M PO4 buffer plus 5% sucrose and postfixed in 1% OsO4 in the same buffer. The fixed tissue was dehydrated in graded ethanol and embedded in Spurr.The tissue which was cultured began to grow out after approximately six weeks and became a continuous epithelial cell line which was designated BOT-2 (Breast Original Tumor). Electron microscopic examination revealed that these cells had epithelial characteristics, i.e. the presence of tonofilaments and well formed desmosomes.


Sign in / Sign up

Export Citation Format

Share Document