scholarly journals Fluconazole plus Cyclosporine: a Fungicidal Combination Effective against Experimental Endocarditis Due to Candida albicans

2000 ◽  
Vol 44 (11) ◽  
pp. 2932-2938 ◽  
Author(s):  
O. Marchetti ◽  
J. M. Entenza ◽  
D. Sanglard ◽  
J. Bille ◽  
M. P. Glauser ◽  
...  

ABSTRACT Recent observations demonstrated that fluconazole plus cyclosporine (Cy) synergistically killed Candida albicans in vitro. This combination was tested in rats with C. albicansexperimental endocarditis. The MICs of fluconazole and Cy for the test organism were 0.25 and >10 mg/liter, respectively. Rats were treated for 5 days with either Cy, amphotericin B, fluconazole, or fluconazole-Cy. Although used at high doses, the peak concentrations of fluconazole in the serum of rats (up to 4.5 mg/liter) were compatible with high-dose fluconazole therapy in humans. On the other hand, Cy concentrations in serum (up to 4.5 mg/liter) were greater than recommended therapeutic levels. Untreated rats demonstrated massive pseudohyphal growth in both the vegetations and the kidneys. However, only the kidneys displayed concomitant polymorphonuclear infiltration. The therapeutic results reflected this dissociation. In the vegetations, only the fungicidal fluconazole-Cy combination significantly decreased fungal densities compared to all groups, including amphotericin B (P < 0.0001). In the kidneys, all regimens except the Cy regimen were effective, but fluconazole-Cy remained superior to amphotericin B and fluconazole alone in sterilizing the organs (P < 0.0001). While the mechanism responsible for the fluconazole-Cy interaction is hypothetical, this observation opens new perspectives for fungicidal combinations between azoles and other drugs.

1999 ◽  
Vol 43 (12) ◽  
pp. 2831-2840 ◽  
Author(s):  
Arnold Louie ◽  
Weiguo Liu ◽  
Dorothy A. Miller ◽  
Alana C. Sucke ◽  
Qing-Feng Liu ◽  
...  

ABSTRACT We compared the efficacies of fluconazole (Flu), amphotericin B (AmB), and 5-fluorocytosine (5FC) monotherapies with the combination of Flu plus 5FC and Flu plus AmB in a rabbit model of Candida albicans endocarditis, endophthalmitis, and pyelonephritis. The dose of Flu used was that which resulted in an area under the concentration-time curve in rabbits equivalent to that seen in humans who receive Flu at 1,600 mg/day, the highest dose not associated with central nervous system toxicity in humans. Quantitative cultures of heart valve vegetations, the choroid-retina, vitreous humor, and kidney were conducted after 1, 5, 14, and 21 days of therapy. All untreated controls died within 6 days of infection; animals treated with 5FC monotherapy all died within 18 days. In contrast, 93% of animals in the other treatment groups appeared well and survived until they were sacrificed. At day 5, the relative decreases in CFU per gram in the vitreous humor were greater in groups that received Flu alone and in combination with 5FC or AmB than in groups receiving AmB or 5FC monotherapies (P< 0.005) but were similar thereafter. In the choroid-retina, 5FC was the least-active drug. However, there were no differences in choroidal fungal densities between the other treatment groups. On days 5 and 14 of therapy, fungal densities in kidneys of AmB recipients were lower than those resulting from the other therapies (P< 0.001 and P ≤ 0.038, respectively) and AmB-plus-Flu therapy was antagonistic; however, all therapies for fungal pyelonephritis were similar by treatment day 21. While fungal counts in cardiac valves of Flu recipients were similar to those of controls on day 5 of therapy and did not change from days 1 to 21, AmB therapy significantly decreased valvular CFUs versus Flu at days 5, 14, and 21 (P < 0.005 at each time point). 5FC plus Flu demonstrated enhanced killing in cardiac vegetations compared with Flu or 5FC as monotherapies (P < 0.03). Similarly, the combination of AmB and Flu was more active than Flu in reducing the fungal density in cardiac vegetations (P < 0.03). However, as in the kidney, AmB plus Flu demonstrated antagonism versus AmB monotherapy in the treatment of C. albicansendocarditis (P < 0.05, P = 0.036, and P < 0.008 on days 5, 14, and 21, respectively).


2009 ◽  
Vol 53 (6) ◽  
pp. 2629-2631 ◽  
Author(s):  
Manjunath P. Pai

ABSTRACT The in vitro effects of flucytosine (5FC), liposomal amphotericin B (L-AmB), and micafungin (Mica) combinations against two Candida albicans strains that simulated 24-hour-old endocardial vegetations were studied. Mica was superior to 5FC or L-AmB, and the 5FC-L-AmB-Mica combination was superior to all other treatments for one strain but no different from the dual combination of L-AmB-Mica for the other strain.


2011 ◽  
Vol 56 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Marisa H. Miceli ◽  
Stella M. Bernardo ◽  
T. S. Neil Ku ◽  
Carla Walraven ◽  
Samuel A. Lee

ABSTRACTInfections and thromboses are the most common complications associated with central venous catheters. Suggested strategies for prevention and management of these complications include the use of heparin-coated catheters, heparin locks, and antimicrobial lock therapy. However, the effects of heparin onCandida albicansbiofilms and planktonic cells have not been previously studied. Therefore, we sought to determine thein vitroeffect of a heparin sodium preparation (HP) on biofilms and planktonic cells ofC. albicans. Because HP contains two preservatives, methyl paraben (MP) and propyl paraben (PP), these compounds and heparin sodium without preservatives (Pure-H) were also tested individually. The metabolic activity of the mature biofilm after treatment was assessed using XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction and microscopy. Pure-H, MP, and PP caused up to 75, 85, and 60% reductions of metabolic activity of the mature preformedC. albicansbiofilms, respectively. Maximal efficacy against the mature biofilm was observed with HP (up to 90%) compared to the individual compounds (P< 0.0001). Pure-H, MP, and PP each inhibitedC. albicansbiofilm formation up to 90%. A complete inhibition of biofilm formation was observed with HP at 5,000 U/ml and higher. When tested against planktonic cells, each compound inhibited growth in a dose-dependent manner. These data indicated that HP, MP, PP, and Pure-H havein vitroantifungal activity againstC. albicansmature biofilms, formation of biofilms, and planktonic cells. Investigation of high-dose heparin-based strategies (e.g., heparin locks) in combination with traditional antifungal agents for the treatment and/or prevention ofC. albicansbiofilms is warranted.


Author(s):  
Ikram Tefiani ◽  
Sidi Mohammed Lahbib Seddiki ◽  
Moustafa Yassine Mahdad

Background and Purpose: Candida albicans is an important microorganism in the normal flora of a healthy subject; however, it has an expedient pathogenic character that induces hydrolytic virulence. Regarding this, the present study aimed to find an in vitro alternative that could reduce the virulence of this yeast. Materials and Methods: For the purpose of the study, the effect of amphotericin B (AmB) combined with the extract of Traganum nudatum (E1) or Mentha pulegium (E2) was evaluated against the hydrolytic activities of esterase, protease, and phospholipase. This effect was determined by calculating the minimum inhibitory concentration (MIC), used to adjust the extract/AmB mixtures in culture media. Results: The evaluated Pz values, which corresponded to the different enzymatic activities, showed a decrease in the hydrolytic activities of C. albicans strains after the addition of E1/AmB and E2/AmB combinations at descending concentrations (lower than the obtained MICs). Conclusion: Based on the findings, it would be possible to reduce the pathogenesis of this species without destabilizing the balance of the flora.


2009 ◽  
Vol 77 (12) ◽  
pp. 5612-5622 ◽  
Author(s):  
T. Eoin West ◽  
Thomas R. Hawn ◽  
Shawn J. Skerrett

ABSTRACT Melioidosis is a tropical disease endemic in southeast Asia and northern Australia caused by the gram-negative soil saprophyte Burkholderia pseudomallei. Although infection is often systemic, the lung is frequently involved. B. thailandensis is a closely related organism that at high doses causes lethal pneumonia in mice. We examined the role of Toll-like receptors (TLRs), essential components of innate immunity, in vitro and in vivo during murine B. thailandensis pneumonia. TLR2, TLR4, and TLR5 mediate NF-κB activation by B. thailandensis in transfected HEK293 or CHO cells. In macrophages, TLR4 and the adaptor molecule MyD88, but not TLR2 or TLR5, are required for tumor necrosis factor alpha production induced by B. thailandensis. In low-dose airborne infection, TLR4 is needed for early, but not late, bacterial containment, and MyD88 is essential for control of infection and host survival. TLR2 and TLR5 are not necessary to contain low-dose infection. In high-dose airborne infection, TLR2 deficiency confers a slight survival advantage. Lung and systemic inflammatory responses are induced by low-dose inhaled B. thailandensis independently of individual TLRs or MyD88. These findings suggest that redundancy in TLR signaling or other MyD88-dependent pathways may be important in pneumonic B. thailandensis infection but that MyD88-independent mechanisms of inflammation are also activated. TLR signaling in B. thailandensis infection is substantially comparable to signaling induced by virulent B. pseudomallei. These studies provide additional insights into the host-pathogen interaction in pneumonic Burkholderia infection.


2001 ◽  
Vol 45 (2) ◽  
pp. 485-494 ◽  
Author(s):  
Arnold Louie ◽  
Pamela Kaw ◽  
Partha Banerjee ◽  
Weiguo Liu ◽  
George Chen ◽  
...  

ABSTRACT In vitro time-kill studies and a rabbit model of endocarditis and pyelonephritis were used to define the impact that the order of exposure of Candida albicans to fluconazole (FLC) and amphotericin B (AMB), as sequential and combination therapies, had on the susceptibility of C. albicans to AMB and on the outcome. The contribution of FLC-induced resistance to AMB for C. albicans also was assessed. In vitro, AMB monotherapy rapidly killed each of four C. albicans strains; FLC alone was fungistatic. Preincubation of these fungi with FLC for 18 h prior to exposure to AMB decreased their susceptibilities to AMB for 8 to >40 h. Induced resistance to AMB was transient, but the duration of resistance increased with the length of FLC preincubation. Yeast sequentially incubated with FLC followed by AMB plus FLC (FLC→AMB+FLC) showed fungistatic growth kinetics similar to that of fungi that were exposed to FLC alone. This antagonistic effect persisted for at least 24 h. Simultaneous exposure of C. albicans to AMB and FLC [AMB+FLC(simult)] demonstrated activity similar to that with AMB alone for AMB concentrations of ≥1 μg/ml; antagonism was seen using an AMB concentration of 0.5 μg/ml. The in vitro findings accurately predicted outcomes in our rabbit infection model. In vivo, AMB monotherapy and treatment with AMB for 24 h followed by AMB plus FLC (AMB→AMB+FLC) rapidly sterilized kidneys and cardiac vegetations. AMB+FLC(simult) and FLC→AMB treatments were slower in clearing fungi from infected tissues. FLC monotherapy and FLC→AMB+FLC were both fungistatic and were the least active regimens. No adverse interaction was observed between AMB and FLC for the AMB→FLC regimen. However, FLC→AMB treatment was slower than AMB alone in clearing fungi from tissues. Thus, our in vitro and in vivo studies both demonstrate that preexposure of C. albicans to FLC reduces fungal susceptibility to AMB. The length of FLC preexposure and whether AMB is subsequently used alone or in combination with FLC determine the duration of induced resistance to AMB.


2012 ◽  
Vol 11 (10) ◽  
pp. 1257-1267 ◽  
Author(s):  
Karla J. Daniels ◽  
Claude Pujol ◽  
Thyagarajan Srikantha ◽  
David R. Soll

ABSTRACTMost experiments exploring the basic biology of pathogenic microbes are performedin vitrounder conditions that do not usually mimic those of their host niche. Hence, developmental programs initiated by specific host cues may be missedin vitro. We have tested the effects of growing low-density agar cultures of the yeast pathogenCandida albicansin concentrations of CO2found in the gastrointestinal tract. It is demonstrated that in physiological concentrations of CO2at 37°C, yeast cells form a heretofore undescribed multicellular “finger” morphology distinct from a previously described stalk-like structure induced by high doses of UV irradiation that kills more than 99.99% of cells. The finger extends aerially, is uniform in diameter, and is visible to the naked eye, attaining lengths of 3 mm. It is composed of a basal yeast cell monolayer adhering to a semispherical crater formed in the agar and connected to a basal bulb of yeast cells at a fragile interface. The bulb extends into the long shaft. We propose that a single, centrally located hypha extending the length of the shaft forms buds at compartment junctions that serve as the source of the yeast cells in the shaft. A mutational analysis reveals finger formation is dependent upon the pathway Ras1→Cdc35→cyclic AMP (cAMP) (PDE2—|)→Tpk2→Tec1. Because of the mechanically fragile interface and the compactness of bulb and shaft, we suggest that the finger may function as a multicellular dispersal mechanism produced in host niches containing high levels of CO2.


1978 ◽  
Vol 24 (4) ◽  
pp. 363-364 ◽  
Author(s):  
C. K. Chan ◽  
Edward Balish

Phagocytic activity of PMN's in five healthy and five burned patients were measured in vitro. Addition of 1 μg per millilitre of amphotericin B to the assay produced a marked inhibitory effect of the phagocytic activity of PMN against C. albicans.


1999 ◽  
Vol 37 (7) ◽  
pp. 2343-2345 ◽  
Author(s):  
Deanna A. Sutton ◽  
Stephen E. Sanche ◽  
Sanjay G. Revankar ◽  
Annette W. Fothergill ◽  
Michael G. Rinaldi

Amphotericin B therapy continues to be the “gold standard” in the treatment of invasive aspergillosis in the immunocompromised host. Although Aspergillus fumigatus and Aspergillus flavus constitute the major species, several reports have described invasive pulmonary or disseminated disease due to the less common Aspergillus terreus and dismal clinical outcomes with high-dose amphotericin B. We therefore evaluated 101 clinical isolates of A. terreus for their susceptibility to amphotericin B and the investigational triazole voriconazole by using the National Committee for Clinical Laboratory Standards M27-A method modified for mould testing. Forty-eight-hour MICs indicated 98 and 0% resistance to amphotericin B and voriconazole, respectively. We conclude that A. terreus should be added to the list of etiologic agents refractory to conventional amphotericin B therapy and suggest the potential clinical utility of voriconazole in aspergillosis due to this species.


Sign in / Sign up

Export Citation Format

Share Document