scholarly journals In Vitro Activities of Daptomycin, Vancomycin, Linezolid, and Quinupristin-Dalfopristin against Staphylococci and Enterococci, Including Vancomycin- Intermediate and -Resistant Strains

2000 ◽  
Vol 44 (4) ◽  
pp. 1062-1066 ◽  
Author(s):  
Michael J. Rybak ◽  
Ellie Hershberger ◽  
Tabitha Moldovan ◽  
Richard G. Grucz

ABSTRACT The in vitro activity of daptomycin was compared with those of vancomycin, linezolid, and quinupristin-dalfopristin against a variety (n = 203) of gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and S. epidermidis (MRSA and MRSE, respectively), vancomycin-resistant enterococci (VRE), and vancomycin-intermediate S. aureus(VISA). Overall, daptomycin was more active against all organisms tested, except Enterococcus faecium and VISA, against which its activity was similar to that of quinupristin-dalfopristin. In time-kill studies with MRSA, MRSE, VRE, and VISA, daptomycin demonstrated greater bactericidal activity than all other drugs tested, killing ≥3 log CFU/ml by 8 h. Daptomycin may be a potential alternative drug therapy for multidrug-resistant gram-positive organisms and warrants further investigation.

2005 ◽  
Vol 49 (6) ◽  
pp. 2498-2500 ◽  
Author(s):  
Eun Jeong Yoon ◽  
Yeong Woo Jo ◽  
Sung Hak Choi ◽  
Tae Ho Lee ◽  
Jae Keol Rhee ◽  
...  

ABSTRACT In vitro and in vivo activities of DA-7867 were assessed against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and penicillin-resistant Streptococcus pneumoniae. All isolates were inhibited by DA-7867 at ≤0.78 μg/ml, a four-times-lower concentration than that of inhibition by linezolid. For murine infection models, DA-7867 also exhibited greater efficacy than linezolid against all isolates tested.


2001 ◽  
Vol 45 (5) ◽  
pp. 1422-1430 ◽  
Author(s):  
Suzanne Chamberland ◽  
Johanne Blais ◽  
Monica Hoang ◽  
Cynthia Dinh ◽  
Dylan Cotter ◽  
...  

ABSTRACT RWJ-54428 (MC-02,479) is a new cephalosporin with a high level of activity against gram-positive bacteria. In a broth microdilution susceptibility test against methicillin-resistant Staphylococcus aureus (MRSA), RWJ-54428 was as active as vancomycin, with an MIC at which 90% of isolates are inhibited (MIC90) of 2 μg/ml. For coagulase-negative staphylococci, RWJ-54428 was 32 times more active than imipenem, with an MIC90 of 2 μg/ml. RWJ-54428 was active against S. aureus, Staphylococcus epidermidis, and Staphylococcus haemolyticus isolates with reduced susceptibility to glycopeptides (RWJ-54428 MIC range, ≤0.0625 to 1 μg/ml). RWJ-54428 was eight times more potent than methicillin and cefotaxime against methicillin-susceptible S. aureus (MIC90, 0.5 μg/ml). For ampicillin-susceptible Enterococcus faecalis (including vancomycin-resistant and high-level aminoglycoside-resistant strains), RWJ-54428 had an MIC90 of 0.125 μg/ml. RWJ-54428 was also active against Enterococcus faecium, including vancomycin-, gentamicin-, and ciprofloxacin-resistant strains. The potency against enterococci correlated with ampicillin susceptibility; RWJ-54428 MICs ranged between ≤0.0625 and 1 μg/ml for ampicillin-susceptible strains and 0.125 and 8 μg/ml for ampicillin-resistant strains. RWJ-54428 was more active than penicillin G and cefotaxime against penicillin-resistant, -intermediate, and -susceptible strains ofStreptococcus pneumoniae (MIC90s, 0.25, 0.125, and ≤0.0625 μg/ml, respectively). RWJ-54428 was only marginally active against most gram-negative bacteria; however, significant activity was observed against Haemophilus influenzae andMoraxella catarrhalis (MIC90s, 0.25 and 0.5 μg/ml, respectively). This survey of the susceptibilities of more than 1,000 multidrug-resistant gram-positive isolates to RWJ-54428 indicates that this new cephalosporin has the potential to be useful in the treatment of infections due to gram-positive bacteria, including strains resistant to currently available antimicrobials.


2005 ◽  
Vol 25 (4) ◽  
pp. 313-319 ◽  
Author(s):  
William Salzer

The incidence of resistant gram-positive bacteria in nosocomial and, more recently, community-acquired infections is increasing. Staphylococci, because of their natural habitat on the skin, have always been the leading cause of peritonitis in patients receiving peritoneal dialysis (PD). These organisms have demonstrated a remarkable ability to develop resistance to antibiotics, first with penicillin, then antistaphylococcal penicillins (methicillin-resistant Staphylococcus aureus), and more recently, strains expressing resistance to vancomycin (vancomycin-intermediate and vancomycin-resistant S. aureus) have emerged. Enterococci are normal inhabitants of the gastrointestinal tract and occasionally cause PD peritonitis. In the past 15 years, vancomycin-resistant enterococci have emerged as significant pathogens in many areas. In the past 5 years, novel antibiotics that have activity on gram-positive bacteria, including vancomycin-resistant strains, have become available. The problem of resistant gram-positive bacteria in PD peritonitis, their therapy, and the role of these newer agents, quinupristin/dalfopristin, linezolid, and daptomycin, are reviewed.


2004 ◽  
Vol 48 (8) ◽  
pp. 3043-3050 ◽  
Author(s):  
Sharath S. Hegde ◽  
Noe Reyes ◽  
Tania Wiens ◽  
Nicole Vanasse ◽  
Robert Skinner ◽  
...  

ABSTRACT Telavancin (TD-6424) is a novel lipoglycopeptide that produces rapid and concentration-dependent killing of clinically relevant gram-positive organisms in vitro. The present studies evaluated the in vivo pharmacodynamics of telavancin in the mouse neutropenic thigh (MNT) and mouse subcutaneous infection (MSI) animal models. Pharmacokinetic-pharmacodynamic studies in the MNT model demonstrated that the 24-h area under the concentration-time curve (AUC)/MIC ratio was the best predictor of efficacy. Telavancin produced dose-dependent reduction of thigh titers of several organisms, including methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA), penicillin-susceptible and -resistant strains of Streptococcus pneumoniae, and vancomycin-resistant Enterococcus faecalis. The 50% effective dose (ED50) estimates for telavancin ranged from 0.5 to 6.6 mg/kg of body weight (administered intravenously), and titers were reduced by up to 3 log10 CFU/g from pretreatment values. Against MRSA ATCC 33591, telavancin was 4- and 30-fold more potent (on an ED50 basis) than vancomycin and linezolid, respectively. Against MSSA ATCC 13709, telavancin was 16- and 40-fold more potent than vancomycin and nafcillin, respectively. Telavancin, vancomycin, and linezolid were all efficacious and more potent against MRSA ATCC 33591 in the MSI model compared to the MNT model. This deviation in potency was, however, disproportionately greater for vancomycin and linezolid than for telavancin, suggesting that activity of telavancin is less affected by the immune status. The findings of these studies collectively suggest that once-daily dosing of telavancin may provide an effective approach for the treatment of clinically relevant infections with gram-positive organisms.


2016 ◽  
Vol 60 (4) ◽  
pp. 2352-2358 ◽  
Author(s):  
Jordan R. Smith ◽  
Juwon Yim ◽  
Animesh Raut ◽  
Michael J. Rybak

ABSTRACTOritavancin possesses activity against vancomycin-resistant enterococci (VRE) and methicillin-resistantStaphylococcus aureus(MRSA).In vitrodata suggest synergy between beta-lactams (BLs) and vancomycin or daptomycin, agents similar to oritavancin. We evaluated the activities of BLs combined with oritavancin against MRSA and VRE. Oritavancin MICs were determined for 30 strains, 5 each of MRSA, daptomycin-nonsusceptible (DNS) MRSA, vancomycin-intermediate MRSA (VISA), heteroresistant VISA (hVISA), vancomycin-resistantEnterococcus faecalis, and vancomycin-resistantEnterococcus faecium. Oritavancin MICs were determined in the presence of subinhibitory concentrations of BLs. Oritavancin combined with ceftaroline, cefazolin, or nafcillin was evaluated for lethal synergy against MRSA, and oritavancin combined with ceftaroline, ampicillin, or ertapenem was evaluated for lethal synergy against VRE in 24-h time-kill assays. Oritavancin at 0.5× the MIC was combined with BLs at 0.5× the MIC or the biological free peak concentration, whichever one was lower. Synergy was defined as a ≥2-log10-CFU/ml difference between the killing achieved with the combination and that achieved with the most active single agent at 24 h. Oritavancin MICs were ≤0.125 μg/ml for all MRSA isolates except three VISA isolates with MICs of 0.25 μg/ml. Oritavancin MICs for VRE ranged from 0.03 to 0.125 μg/ml. Oritavancin in combination with ceftaroline was synergistic against all MRSA phenotypes and statistically superior to all other combinations against DNS MRSA, hVISA, and MRSA isolates (P< 0.02). Oritavancin in combination with cefazolin and oritavancin in combination with nafcillin were also synergistic against all MRSA strains. Synergy between oritavancin and all BLs was revealed against VRE strain 8019, while synergy between oritavancin and ampicillin or ertapenem but not ceftaroline was demonstrated against VRE strain R7164. The data support the potential use of oritavancin in combination with BLs, especially oritavancin in combination with ceftaroline, for the treatment of infections caused by MRSA. The data from the present study are not as strong for oritavancin in combination with BLs for VRE. Further study of both MRSA and VRE in more complex models is warranted.


2010 ◽  
Vol 54 (9) ◽  
pp. 3799-3803 ◽  
Author(s):  
Kimberly D. Leuthner ◽  
Celine Vidaillac ◽  
Chrissy M. Cheung ◽  
Michael J. Rybak

ABSTRACT TD-1792 is a glycopeptide-cephalosporin heterodimer antibiotic with activity against a broad spectrum of Gram-positive pathogens that includes methicillin-susceptible and -resistant Staphylococcus aureus. The objective of the present study was to evaluate the in vitro activity of TD-1792 against a collection of clinical isolates of vancomycin-intermediate Staphylococcus spp. (VISS), heteroresistant VISS (hVISS), and vancomycin-resistant S. aureus (VRSA). The TD-1792, vancomycin, daptomycin, linezolid, and quinupristin-dalfopristin MICs and minimum bactericidal concentrations (MBCs) were determined for 50 VISS/hVISS isolates and 3 VRSA isolates. Time-kill experiments (TKs) were then performed over 24 h with two vancomycin-intermediate S. aureus strains and two VRSA strains, using each agent at multiples of the MIC. TD-1792 and daptomycin were also evaluated in the presence and absence of 50% human serum to determine the effects of the proteins on their activities. Most of the VISS/hVISS isolates were susceptible to all agents except vancomycin. TD-1792 exhibited the lowest MIC values (MIC90 = 0.125 μg/ml), followed by quinupristin-dalfopristin and daptomycin (MIC90 = 1 μg/ml) and then linezolid (MIC90 = 2 μg/ml). The presence of serum resulted in a 2- to 8-fold increase in the TD-1792 and daptomycin MIC values. In TKs, QD demonstrated bactericidal activity at multiples of the MIC that simulated therapeutic levels, whereas linezolid was only bacteriostatic. Both TD-1792 and daptomycin demonstrated rapid bactericidal activities against all isolates tested. The presence of proteins had only a minimal impact on the activity of TD-1792 in TKs. TD-1792 exhibited significant in vitro activity against multidrug-resistant Staphylococcus isolates and represents a promising candidate for the treatment of infections caused by Gram-positive organisms.


2008 ◽  
Vol 52 (5) ◽  
pp. 1653-1662 ◽  
Author(s):  
Laura Lawrence ◽  
Paul Danese ◽  
Joe DeVito ◽  
Francois Franceschi ◽  
Joyce Sutcliffe

ABSTRACT Rx-01_423 and Rx-01_667 are two members of the family of oxazolidinones that were designed using a combination of computational and medicinal chemistry and conventional biological techniques. The compounds have a two- to eightfold-improved potency over linezolid against serious gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant streptococci, and vancomycin-resistant enterococci. This enhanced potency extends to the coverage of linezolid-resistant gram-positive microbes, especially multidrug-resistant enterococci and pneumococci. Compounds from this series expand the spectrum compared with linezolid to include fastidious gram-negative organisms like Haemophilus influenzae and Moraxella catarrhalis. Like linezolid, the Rx-01 compounds are bacteriostatic against MRSA and enterococci but are generally bactericidal against S. pneumoniae and H. influenzae.


Marine Drugs ◽  
2018 ◽  
Vol 16 (8) ◽  
pp. 289 ◽  
Author(s):  
Decha Kumla ◽  
José Pereira ◽  
Tida Dethoup ◽  
Luis Gales ◽  
Joana Freitas-Silva ◽  
...  

A previously unreported chromene derivative, 1-hydroxy-12-methoxycitromycin (1c), and four previously undescribed chromone derivatives, including pyanochromone (3b), spirofuranochromone (4), 7-hydroxy-6-methoxy-4-oxo-3-[(1E)-3-oxobut-1-en-1-yl]-4H-chromene-5-carboxylic acid (5), a pyranochromone dimer (6) were isolated, together with thirteen known compounds: β-sitostenone, ergosterol 5,8-endoperoxide, citromycin (1a), 12-methoxycitromycin (1b), myxotrichin D (1d), 12-methoxycitromycetin (1e), anhydrofulvic acid (2a), myxotrichin C (2b), penialidin D (2c), penialidin F (3a), SPF-3059-30 (7), GKK1032B (8) and secalonic acid A (9), from cultures of the marine sponge- associated fungus Penicillium erubescens KUFA0220. Compounds 1a–e, 2a, 3a, 4, 7–9, were tested for their antibacterial activity against Gram-positive and Gram-negative reference and multidrug-resistant strains isolated from the environment. Only 8 exhibited an in vitro growth inhibition of all Gram-positive bacteria whereas 9 showed growth inhibition of methicillin-resistant Staphyllococus aureus (MRSA). None of the compounds were active against Gram-negative bacteria tested.


2009 ◽  
Vol 54 (2) ◽  
pp. 960-962 ◽  
Author(s):  
Kenji Miura ◽  
Hidenori Yamashiro ◽  
Kouichi Uotani ◽  
Satoshi Kojima ◽  
Takashi Yutsudo ◽  
...  

ABSTRACT Van-M-02, a novel glycopeptide, was revealed to exert potent activities against Gram-positive bacteria, including vancomycin-resistant enterococci (VRE) and vancomycin-resistant Staphylococcus aureus (VRSA). A crude assay system was then used to study the mode of action of Van-M-02 as a peptidoglycan synthesis model of both vancomycin-susceptible and -resistant strains. The results suggested that Van-M-02 inhibits the synthesis of lipid intermediates irrespective of their termini. This inhibitory activity may contribute to the anti-VRE and anti-VRSA activities observed.


2001 ◽  
Vol 45 (12) ◽  
pp. 3640-3643 ◽  
Author(s):  
Kavindra V. Singh ◽  
Kumthorn Malathum ◽  
Barbara E. Murray

ABSTRACT The in vitro activities of ABT-773 were evaluated against 324 strains of gram-positive bacteria, including multidrug-resistantStaphylococcus spp. and Enterococcus spp. ABT-773 had lower MIC ranges, MICs at which 50% of isolates are inhibited (MIC50s), and MIC90s than erythromycin or clindamycin for almost all isolates tested. The MICs of ABT-773 were also lower than those of quinupristin-dalfopristin (Q-D) for methicillin-susceptible Staphylococcus aureus,Rhodococcus spp., and Streptococcus spp., while the MICs of Q-D were lower than those of ABT-773 for methicillin-resistant S. aureus and Enterococcus faecium, including vancomycin-resistant isolates.


Sign in / Sign up

Export Citation Format

Share Document