scholarly journals Compartmental Pharmacokinetics and Tissue Distribution of the Antifungal Echinocandin Lipopeptide Micafungin (FK463) in Rabbits

2001 ◽  
Vol 45 (12) ◽  
pp. 3322-3327 ◽  
Author(s):  
Andreas H. Groll ◽  
Diana Mickiene ◽  
Vidmantas Petraitis ◽  
Ruta Petraitiene ◽  
Khalid H. Ibrahim ◽  
...  

ABSTRACT The plasma pharmacokinetics and tissue distribution of the novel antifungal echinocandin-like lipopeptide micafungin (FK463) were investigated in healthy rabbits. Cohorts of three animals each received micafungin at 0.5, 1, and 2 mg/kg of body weight intravenously once daily for a total of 8 days. Serial plasma samples were collected on days 1 and 7, and tissue samples were obtained 30 min after the eighth dose. Drug concentrations were determined by validated high-performance liquid chromatographic methods. Plasma drug concentration data were fit to a two-compartment pharmacokinetic model, and pharmacokinetic parameters were estimated using weighted nonlinear least-square regression analysis. Micafungin demonstrated linear plasma pharmacokinetics without changes in total clearance and dose-normalized area under the concentration-time curve from 0 h to infinity. After administration of single doses to the rabbits, mean peak plasma drug concentrations ranged from 7.62 μg/ml at 0.5 mg/kg to 16.8 μg/ml at 2 mg/kg, the area under the concentration-time curve from 0 to 24 h ranged from 5.66 to 21.79 μg · h/ml, the apparent volume of distribution at steady state ranged from 0.296 to 0.343 liter/kg, and the elimination half-life ranged from 2.97 to 3.20 h, respectively. No significant changes in pharmacokinetic parameters and no accumulation was noted after multiple dosing. Mean tissue micafungin concentrations 30 min after the last of eight daily doses were highest in the lung (2.26 to 11.76 μg/g), liver (2.05 to 8.82 μg/g), spleen (1.87 to 9.05 μg/g), and kidney (1.40 to 6.12 μg/g). While micafungin was not detectable in cerebrospinal fluid, the concentration in brain tissue ranged from 0.08 to 0.18 μg/g. These findings indicate linear disposition of micafungin at dosages of 0.5 to 2 mg/kg and achievement of potentially therapeutic drug concentrations in plasma and tissues that are common sites of invasive fungal infections.

2010 ◽  
Vol 54 (8) ◽  
pp. 3225-3232 ◽  
Author(s):  
Claudia Michael ◽  
Uta Bierbach ◽  
Katrin Frenzel ◽  
Thoralf Lange ◽  
Nadezda Basara ◽  
...  

ABSTRACT The aim of this study was to investigate the pharmacokinetics and safety of voriconazole after intravenous (i.v.) administration in immunocompromised children (2 to 11 years old) and adults (20 to 60 years old) who required treatment for the prevention or therapy of systemic fungal infections. Nine pediatric patients were treated with a dose of 7 mg/kg i.v. every 12 h for a period of 10 days. Three children and 12 adults received two loading doses of 6 mg/kg i.v. every 12 h, followed by a maintenance dose of 5 mg/kg (children) or 4 mg/kg (adults) twice a day during the entire study period. Trough voriconazole levels in blood over 10 days of therapy and regular voriconazole levels in blood for up to 12 h postdose on day 3 were examined. Wide intra- and interindividual variations in plasma voriconazole levels were noted in each dose group and were most pronounced in the children receiving the 7-mg/kg dose. Five (56%) of them frequently had trough voriconazole levels in plasma below 1 μg/ml or above 6 μg/ml. The recommended dose of 7 mg/kg i.v. in children provides exposure (area under the concentration-time curve) comparable to that observed in adults receiving 4 mg/kg i.v. The children had significantly higher C max values; other pharmacokinetic parameters were not significantly different from those of adults. Voriconazole exhibits nonlinear pharmacokinetics in the majority of children. Voriconazole therapy was safe and well tolerated in pediatric and adult patients. The European Medicines Agency-approved i.v. dose of 7 mg/kg can be recommended for children aged 2 to <12 years.


2000 ◽  
Vol 44 (4) ◽  
pp. 950-957 ◽  
Author(s):  
Andreas H. Groll ◽  
Diana Mickiene ◽  
Kathy Werner ◽  
Ruta Petraitiene ◽  
Vidmantas Petraitis ◽  
...  

ABSTRACT The plasma pharmacokinetics of multilamellar liposomal nystatin were studied in normal, catheterized rabbits after single and multiple daily intravenous administration of dosages of 2, 4, and 6 mg/kg of body weight, and drug levels in tissues were assessed after multiple dosing. Concentrations of liposomal nystatin were measured as those of nystatin by a validated high-performance liquid chromatography method, and plasma concentration data were fitted into a two-compartment open model. Across the investigated dosage range, liposomal nystatin demonstrated nonlinear kinetics with more than proportional increases in the AUC0–24 and decreasing clearance, consistent with dose-dependent tissue distribution and/or a dose-dependent elimination process. After single-dose administration, the meanC max increased from 13.07 μg/ml at 2 mg/kg to 41.91 μg/ml at 6 mg/kg (P < 0.001); the AUC0–24 changed from 11.65 to 67.44 μg · h/ml (P < 0.001), the Vd changed from 0.205 to 0.184 liters/kg (not significant), the CL t from 0.173 to 0.101 liters/kg · h (P < 0.05), and terminal half-life from 0.96 to 1.51 h (P < 0.05). There were no significant changes in pharmacokinetic parameters after multiple dosing over 14 days. Assessment of tissue concentrations of nystatin near peak plasma levels after multiple dosing over 15 days revealed preferential distribution to the lungs, liver, and spleen at that time point. Substantial levels were also found in the urine, raising the possibility that renal excretion may play a significant role in drug elimination. Liposomal nystatin administered to rabbits was well tolerated and displayed nonlinear pharmacokinetics, potentially therapeutic peak plasma concentrations, and substantial penetration into tissues. Pharmacokinetic parameters were very similar to those observed in patients, thus validating results derived from infection models in the rabbit and allowing inferences to be made about the treatment of invasive fungal infections in humans.


2020 ◽  
Vol 54 (7) ◽  
pp. 676-683
Author(s):  
Tian Cai ◽  
Youming Liao ◽  
Zhenhua Chen ◽  
Yingchang Zhu ◽  
Xincai Qiu

Background: Cyclophosphamide is one of the most important chemotherapeutic drugs. Known as a widely accepted treatment strategy, chemotherapy may damage the immune function of cancer patients; as a result, invasive fungal infections (IFIs) occur. Triazole antifungal agents are the most acceptable drugs for IFI treatment, especially those infections caused by chemotherapy. Objective: We aimed to investigate the effects of different triazole antifungal drugs, including fluconazole, itraconazole, and ketoconazole, on the pharmacokinetics (PK) of cyclophosphamide. In addition, we also characterize the potential drug-drug interactions (DDIs) between cyclophosphamide and various triazole antifungal drugs. Methods: The necessary pharmacokinetic parameters and physicochemical data were obtained from published studies. Physiologically based pharmacokinetic (PBPK) models were developed and validated in virtual subjects using Simcyp software. The validated PBPK models were used to evaluate potential DDIs between cyclophosphamide and different triazole antifungal agents in cancer patients. Triazole antifungal agents were simulated by oral administration, whereas cyclophosphamide was simulated by intravenous administration. Results: Simulated plasma concentration-time curves of fluconazole, itraconazole, ketoconazole, and cyclophosphamide were in good consistency with the observed profiles. Our results suggested that the pharmacokinetic parameters of cyclophosphamide were increased by various extents when coadministered with different triazole antifungals. The area under the plasma concentration-time curve of cyclophosphamide was increased when combined with fluconazole, itraconazole, or ketoconazole. Conclusions and Relevance: Ketoconazole had the greatest effect on the PK of cyclophosphamide among the 3 triazole antifungals. Our study provides clues that the toxicity and adverse drug reactions that are associated with cyclophosphamide should be closely monitored when coadministered with ketoconazole.


2012 ◽  
Vol 56 (11) ◽  
pp. 5724-5727 ◽  
Author(s):  
Kamilia Abdelraouf ◽  
Jie He ◽  
Kimberly R. Ledesma ◽  
Ming Hu ◽  
Vincent H. Tam

ABSTRACTThe increasing prevalence of multidrug-resistant Gram-negative infections has led to the resurgence of systemic polymyxin B, but little is known about its pharmacokinetics. The objective of this study was to characterize the pharmacokinetics and renal disposition of polymyxin B. Eight female Sprague-Dawley rats (weight, 225 to 250 g) were administered a single intravenous polymyxin B dose (4 mg/kg of body weight). Serial serum samples were collected and assayed for major polymyxin B components using a validated ultraperformance liquid chromatography-tandem mass spectrometry method. The best-fit pharmacokinetic parameters of each component were derived and compared using one-way analysis of variance. Cumulative urine was also collected daily for 48 h and assayed for polymyxin B. Kidney drug concentrations were measured at 6 h (n= 3) and 48 h (n= 3) after the same dose. Additionally, three rats were administered 2 doses of intravenous polymyxin B (4 mg/kg) 7 days apart. Serial serum samples were collected pre- and post-renal insufficiency (induced by uranyl nitrate) and assayed for polymyxin B. The pharmacokinetic parameters of the major components did not appear to be significantly different (P> 0.05). Less than 1% of the dose was recovered unchanged in urine collected over 48 h following administration. Therapeutic drug concentrations persisted in kidney tissue at 48 h. The post-renal insufficiency to pre-renal insufficiency ratio of the area under the serum concentration-time curve from time zero to infinity was 1.33 ± 0.04. Polymyxin B components appear to have similar pharmacokinetics. Polymyxin B preferentially persists in kidneys, which suggests a selective uptake process in renal cells. A mechanism(s) other than renal excretion could be involved in polymyxin B elimination, and dosing adjustment in renal insufficiency may not be necessary.


2003 ◽  
Vol 47 (12) ◽  
pp. 3917-3925 ◽  
Author(s):  
Andreas H. Groll ◽  
Diana Mickiene ◽  
Vidmantas Petraitis ◽  
Ruta Petraitiene ◽  
Raul M. Alfaro ◽  
...  

ABSTRACT The comparative drug dispositions, urinary pharmacokinetics, and effects on renal function of multilamellar liposomal nystatin (LNYS; Nyotran) and amphotericin B deoxycholate (DAMB; Fungizone) were studied in rabbits. Drug concentrations were determined by high-performance liquid chromatography as total concentrations of LNYS and DAMB. In comparison to a standard dose of 1 mg of DAMB/kg of body weight, therapeutic dosages of LNYS, i.e., 2, 4, and 6 mg/kg, resulted in escalating maximum concentrations (C max) (17 to 56μ g/ml for LNYS versus 3.36 μg/ml for DAMB; P< 0.001) and values for the area under the concentration-time curve from 0 to 24 h (AUC0-24) (17 to 77μ g · h/ml for LNYS versus 12μ g · h/ml for DAMB; P < 0.001) in plasma but a significantly faster total clearance from plasma (0.117 to 0.080 liter/h/kg for LNYS versus 0.055 liter/h/kg for DAMB; P = 0.013) and a ≤8-fold-smaller volume of distribution at steady state (P = 0.002). Urinary drug concentration data revealed a ≥10-fold-higher C max (16 to 10 μg/ml for LNYS versus 0.96μ g/ml for DAMB; P = 0.015) and a 4- to 7-fold-greater AUC0-24 (63 to 35μ g · h/ml for LNYS versus 8.9μ g · h/ml for DAMB; P = 0.015) following the administration of LNYS, with a dose-dependent decrease in the dose-normalized AUC0-24 in urine (P= 0.001) and a trend toward a dose-dependent decrease in renal clearance. Except for the kidneys, the mean concentrations of LNYS in liver, spleen, and lung 24 h after dosing were severalfold lower than those after administration of DAMB (P,<0.002 to <0.001). Less than 1% each of the total dose of LNYS was recovered from the kidneys, liver, spleen, and lungs; in contrast, a quarter of the total dose was recovered from the livers of DAMB-treated animals. LNYS had dose-dependent effects on glomerular filtration and distal, but not proximal, renal tubular function which did not exceed those of DAMB at the highest investigated dosage of 6 mg/kg. The results of this experimental study demonstrate fundamental differences in the dispositions of LNYS and DAMB. Based on its enhanced urinary exposure, LNYS may offer a therapeutic advantage in systemic fungal infections involving the upper and lower urinary tracts that require therapy with antifungal polyenes.


2009 ◽  
Vol 43 (4) ◽  
pp. 726-731 ◽  
Author(s):  
He-Ping Lei ◽  
Guo Wang ◽  
Lian-Sheng Wang ◽  
Dong-sheng Ou-yang ◽  
Hao Chen ◽  
...  

Background: Ginkgo biloba is one of the most popular herbal supplements in the world. The supplement has been shown to induce the enzymatic activity of CYP2C19, the main cytochrome P450 isozyme involved in voriconazole metabolism. Because this enzyme exhibits genetic polymorphism, the inductive effect was expected to be modulated by the CYP2C19 metabolizer status. Objective: To examine the possible effects of Ginkgo biloba as an inducer of CYP2C19 on single-dose pharmacokinetics of voriconazole in Chinese volunteers genotyped as either CVP2C19 extensive or poor metabolizers. Methods: Fourteen healthy, nonsmoking volunteers–7 CYP2C19 extensive metabolizers (2C19*1/2C19*1) and 7 poor metabolizers (2C19*2/2C19*2)–were selected to participate in this study. Pharmacokinetics of oral voriconazole 200 mg after administration of Ginkgo biloba 120 mg twice daily for 12 days were determined for up to 24 hours by liquid chromatography–electrospray tandem mass spectrometry in a 2-phase randomized crossover study with 4-week washout between phases. Results: For extensive metabolizers, the median value for voriconazole area under the plasma concentration–time curve from zero to infinity (AUC0-00) was 5.17 μg•h/mL after administration of voriconazole alone and 4.28 μg•/mL after voriconazole with Ginkgo biloba (p > 0.05). The other pharmacokinetic parameters of voriconazole such as AUC0-24, time to reach maximum concentration, half-life, and apparent clearance also did not change significantly for extensive metabolizers in the presence of Ginkgo biloba. Pharmacokinetic parameters followed a similar pattern for poor metabolizers. Conclusions: The results suggest that 12 days of treatment with Ginkgo biloba did not significantly alter the single-dose pharmacokinetics of voriconazole in either CYP2C19 extensive or poor metabolizers. Therefore, the pharmacokinetic interactions between voriconazole and Ginkgo biloba may have limited clinical significance.


2006 ◽  
Vol 50 (4) ◽  
pp. 1170-1177 ◽  
Author(s):  
Helen McIlleron ◽  
Peter Wash ◽  
André Burger ◽  
Jennifer Norman ◽  
Peter I. Folb ◽  
...  

ABSTRACT Evaluation of sources of pharmacokinetic variation can facilitate optimization of tuberculosis treatment regimens by identification of avoidable sources of variation and of risk factors for low or high drug concentrations in patients. Our objective was to describe the pharmacokinetics of rifampin, isoniazid, pyrazinamide, and ethambutol in a cohort of tuberculosis patients established on first-line treatment regimens and to evaluate the determinants of pharmacokinetic variation. Plasma concentration-time profiles were determined for each of the drugs in 142 patients with drug-sensitive pulmonary tuberculosis after 2 months of daily treatment in hospital. Pharmacokinetic measures were described by noncompartmental analysis. Multiple linear regression was used to evaluate the patient and the treatment factors associated with variation of the area under the concentration-time curve from 0 to 8 h. Several factors independently associated with variations in antituberculosis drug concentrations were identified: human immunodeficiency virus infection was associated with 39% and 27% reductions for rifampin and ethambutol, respectively; formulation factors were determinants of rifampin and isoniazid bioavailability; female patients had increased rifampin and isoniazid concentrations but reduced ethambutol concentrations; older patients had higher levels of isoniazid and ethambutol; patients with a history of previous antituberculosis treatment had lower ethambutol concentrations; and the dose per kilogram of body weight was associated with the concentrations of all four agents. Further studies are required to assess the implications of variations in antituberculosis drug concentrations for efficacy and safety before decisions are made to change the dosing strategy in patients at risk.


1996 ◽  
Vol 40 (11) ◽  
pp. 2577-2581 ◽  
Author(s):  
D R Luke ◽  
G Foulds ◽  
S F Cohen ◽  
B Levy

To date, the clinical pharmacology of large intravenous doses of azithromycin has not been described. In the present study, single 2-h intravenous infusions of 1, 2, and 4 g of azithromycin were administered to three parallel groups (in each group, six received active drug and two received placebo) of healthy male subjects. Toleration (assessed by scores of subject-administered visual analog scale tests spanning 0 [good] to 10 [poor]), safety, pharmacokinetics, and serum motilin levels were monitored for up to 240 h after the start of each intravenous infusion. Mean nausea scores of 0.0, 0.0, 1.0, and 0.5 and abdominal cramping scores of 0.0, 0.0, 0.4, and 0.4 for 12-h periods after doses of 0, 1, 2, and 4 g of azithromycin, respectively, suggested that azithromycin was well tolerated. Because of the standardized 1-mg/ml infusates, all subjects in the 4-g dosing group complained of an urgent need to urinate. There were no consistent trends in endogenous motilin levels throughout the study. The maximum concentration of azithromycin in serum (10 micrograms/ml after a 4-g dose) and the area under the concentration-time curve (82 micrograms.h/ml after a 4-g dose) were dose related. The mean pharmacokinetic parameters were an elimination half-life of 69 h, total systemic clearance of 10 ml/min/kg, and a volume of distribution at steady state of 33.3 liters/kg. The pharmacokinetic results suggest that the long half-life of azithromycin is due to extensive uptake and slow release of the drug from tissues rather than an inability to clear the drug. Single intravenous doses of up to 4 g of azithromycin in healthy subjects are generally well tolerated, and quantifiable concentrations may persist in serum for 10 days or more.


1999 ◽  
Vol 43 (5) ◽  
pp. 1152-1155 ◽  
Author(s):  
Kevin W. Garey ◽  
Charles A. Peloquin ◽  
Paul G. Godo ◽  
Anne N. Nafziger ◽  
Guy W. Amsden

ABSTRACT This randomized, open-label, crossover study was conducted to investigate whether the coadministration of zafirlukast would affect the pharmacokinetics of azithromycin, clarithromycin, or 14-hydroxyclarithromycin (14-OHC). Twelve healthy subjects (six males and six females) received single 500-mg doses of azithromycin and clarithromycin with and without zafirlukast given to a steady-state concentration. Blood was collected prior to all macrolide doses and for 3 and 10 days after each clarithromycin and azithromycin dose, respectively. Serum was assayed for azithromycin, clarithromycin, and 14-OHC concentrations by validated high-performance liquid chromatography assay systems. Data analyses were done by noncompartmental and nonparametric methods. Analysis of the patients indicated that the addition of steady-state concentrations of zafirlukast did not significantly alter the pharmacokinetic parameters of or overall exposure (based on the area under the concentration-time curve) to azithromycin, clarithromycin, and 14-OHC. While zafirlukast is a known inhibitor of CYP3A4, it does not appear to exert a clinically or statistically significant pharmacokinetic effect on azithromycin, clarithromycin, or 14-OHC.


2012 ◽  
Vol 116 (5) ◽  
pp. 1124-1133 ◽  
Author(s):  
Bruce Hullett ◽  
Sam Salman ◽  
Sean J. O'Halloran ◽  
Deborah Peirce ◽  
Kylie Davies ◽  
...  

Background Parecoxib is a cyclooxygenase-2 selective inhibitor used in management of postoperative pain in adults. This study aimed to provide pediatric pharmacokinetic information for parecoxib and its active metabolite valdecoxib. Methods Thirty-eight children undergoing surgery received parecoxib (1 mg/kg IV to a maximum of 40 mg) at induction of anesthesia, and plasma samples were collected for drug measurement. Population pharmacokinetic parameters were estimated using nonlinear mixed effects modeling. Area under the valdecoxib concentration-time curve and time above cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib were simulated. Results A three-compartment model best represented parecoxib disposition, whereas one compartment was adequate for valdecoxib. Age was linearly correlated with parecoxib clearance (5.0% increase/yr). There was a sigmoid relationship between age and both valdecoxib clearance and distribution volume. Time to 50% maturation was 87 weeks postmenstrual age for both. In simulations using allometric-based doses the 90% prediction interval of valdecoxib concentration-time curve in children 2-12.7 yr included the mean for adults given 40 mg parecoxib IV. Simulated free valdecoxib plasma concentration remained above the in vitro 50% inhibitory concentrations for more than 12 h. In children younger than 2 yr, a dose reduction is likely required due to ongoing metabolic maturation. Conclusions The final pharmacokinetic model gave a robust representation of parecoxib and valdecoxib disposition. Area under the valdecoxib concentration-time curve was similar to that in adults (40 mg), and simulated free valdecoxib concentration was above the cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib for at least 12 h.


Sign in / Sign up

Export Citation Format

Share Document