scholarly journals High Prevalence of Inducible Erythromycin Resistance among Streptococcus bovis Isolates in Taiwan

2001 ◽  
Vol 45 (12) ◽  
pp. 3362-3365 ◽  
Author(s):  
Lee-Jene Teng ◽  
Po-Ren Hsueh ◽  
Shen-Wu Ho ◽  
Kwen-Tay Luh

ABSTRACT Susceptibilities to 13 antimicrobial agents were determined by measurement of MICs for 60 isolates of Streptococcus bovis from blood cultures. Thirty-eight isolates (63.3%) had high-level resistance to erythromycin (MICs, ≥128 μg/ml). Among the 38 erythromycin-resistant strains, 21 isolates (55%) had inducible resistance to macrolides-lincosamides-streptogramin B (iMLS isolates) and 17 (45%) had constitutive resistance to macrolides-lincosamides-streptogramin B (cMLS isolates). Tetracycline resistance was also found among all of the erythromycin-resistant strains. None of the strains displayed resistance to penicillin, chloramphenicol, or vancomycin. Detection of erythromycin resistance genes by PCR and sequencing indicated that all 17 cMLS isolates were positive for the ermB gene and that 7 of 21 iMLS isolates carried the ermB gene and the remaining 14 iMLS isolates carried the ermT gene. Sequence analysis of amplified partial ermB fragments (594 bp) from S. bovis isolates revealed a 99.8% nucleotide identity and a 100% amino acid homology compared with the sequences from gene banks. The sequences of amplified fragments with primers targeted forermC were shown to be very similar to that ofermGT (ermT) from Lactobacillus reuteri (98.5% nucleotide identity). This is the first report to describe the detection of the ermT class of erythromycin resistance determinants in S. bovis. The high rate of inducible erythromycin resistance among S. bovis isolates in Taiwan was not reported before. The iMLSS. bovis isolates were shown to be heterogeneous by randomly amplified polymorphic DNA analysis. These results indicate that the prevalence of inducible erythromycin resistance in S. bovis in Taiwan is very high and that most of the resistant strains carry the ermT or the ermB gene.

2016 ◽  
Vol 55 (2) ◽  
pp. 412-422 ◽  
Author(s):  
Sarah Teatero ◽  
Patricia Ferrieri ◽  
Irene Martin ◽  
Walter Demczuk ◽  
Allison McGeer ◽  
...  

ABSTRACTUsing serotyping, multilocus sequence typing, and whole-genome sequencing (WGS) of selected strains, we studied the population structure of 102 group BStreptococcus(GBS) isolates prospectively sampled in 2014 from vaginal/rectal swabs of healthy pregnant women in metropolitan Toronto, Canada. We also determined the susceptibilities of each of the colonizing isolates to penicillin, erythromycin, clindamycin, tetracycline, and other antimicrobial agents. Overall, we observed a high rate of tetracycline resistance (89%) among colonizing GBS isolates. We found resistance to erythromycin in 36% of the strains, and 33% were constitutively or inducibly resistant to clindamycin. The most frequently identified serotypes were III (25%), Ia (23%), and V (19%). Serotype IV accounted for 6% of the colonizing isolates, a rate consistent with that observed among patients with invasive GBS infections in metropolitan Toronto. The majority of serotype IV isolates belonged to sequence type (ST)459, a tetracycline-, erythromycin-, and clindamycin-resistant ST first identified in Minnesota, which is considered to be the main driver of serotype IV GBS expansion in North America. WGS revealed that ST459 isolates from Canada are clonally related to colonizing and invasive ST459 organisms circulating in regions of the United States. We also used WGS to study recombination in selected colonizing strains from metropolitan Toronto, which revealed multiple episodes of capsular switching. Present and future circulating GBS organisms and their genetic diversity may influence GBS vaccine development.


2004 ◽  
Vol 70 (3) ◽  
pp. 1442-1447 ◽  
Author(s):  
K. Sato ◽  
P. C. Bartlett ◽  
J. B. Kaneene ◽  
F. P. Downes

ABSTRACT The prevalence and antimicrobial susceptibilities of Campylobacter spp. isolates from bovine feces were compared between organic and conventional dairy herds. Thirty organic dairy herds, where antimicrobials are rarely used for calves and never used for cows, were compared with 30 neighboring conventional dairy farms, where antimicrobials were routinely used for animals for all ages. Fecal specimens from 10 cows and 10 calves on 120 farm visits yielded 332 Campylobacter isolates. The prevalence of Campylobacter spp. in organic and conventional farms was 26.7 and 29.1%, and the prevalence was not statistically different between the two types of farms. Campylobacter prevalence was significantly higher in March than in September, higher in calves than in cows, and higher in smaller farms than in large farms. The rates of retained placenta, pneumonia, mastitis, and abortion were associated with the proportion of Campylobacter isolation from fecal samples. The gradient disk diffusion MIC method (Etest) was used for testing susceptibility to four antimicrobial agents: ciprofloxacin, gentamicin, erythromycin, and tetracycline. Two isolates were resistant to ciprofloxacin, and none of isolates was resistant to gentamicin or erythromycin. Resistance to tetracycline was 45% (148 of 332 isolates). Tetracycline resistance was found more frequently in calves than in cows (P = 0.042), but no difference was observed between organic and conventional farms. When we used Campylobacter spp. as indicator bacteria, we saw no evidence that restriction of antimicrobial use on dairy farms was associated with prevalence of resistance to ciprofloxacin, gentamicin, erythromycin, and tetracycline.


1999 ◽  
Vol 43 (8) ◽  
pp. 1935-1940 ◽  
Author(s):  
Eleonora Giovanetti ◽  
Maria Pia Montanari ◽  
Marina Mingoia ◽  
Pietro Emanuele Varaldo

ABSTRACT A total of 387 clinical strains of erythromycin-resistant (MIC, ≥1 μg/ml) Streptococcus pyogenes, all isolated in Italian laboratories from 1995 to 1998, were examined. By the erythromycin-clindamycin double-disk test, 203 (52.5%) strains were assigned to the recently described M phenotype, 120 (31.0%) were assigned to the inducible macrolide, lincosamide, and streptogramin B resistance (iMLS) phenotype, and 64 (16.5%) were assigned to the constitutive MLS resistance (cMLS) phenotype. The inducible character of the resistance of the iMLS strains was confirmed by comparing the clindamycin MICs determined under normal testing conditions and those determined after induction by pregrowth in 0.05 μg of erythromycin per ml. The MICs of erythromycin, clarithromycin, azithromycin, josamycin, spiramycin, and the ketolide HMR3004 were then determined and compared. Homogeneous susceptibility patterns were observed for the isolates of the cMLS phenotype (for all but one of the strains, HMR3004 MICs were 0.5 to 8 μg/ml and the MICs of the other drugs were >128 μg/ml) and those of the M phenotype (resistance only to the 14- and 15-membered macrolides was recorded, with MICs of 2 to 32 μg/ml). Conversely, heterogeneous susceptibility patterns were observed in the isolates of the iMLS phenotype, which were subdivided into three distinct subtypes designated iMLS-A, iMLS-B, and iMLS-C. The iMLS-A strains (n = 84) were highly resistant to the 14-, 15-, and 16-membered macrolides and demonstrated reduced susceptibility to low-level resistance to HMR3004. The iMLS-B strains (n = 12) were highly resistant to the 14- and 15-membered macrolides, susceptible to the 16-membered macrolides (but highly resistant to josamycin after induction), and susceptible to HMR3004 (but intermediate or resistant after induction). The iMLS-C strains (n = 24) had lower levels of resistance to the 14- and 15-membered macrolides (with erythromycin MICs increasing two to four times after induction), were susceptible to the 16-membered macrolides (but resistant to josamycin after induction), and remained susceptible to HMR3004, also after induction. The erythromycin resistance genes in 100 isolates of the different groups were investigated by PCR. All cMLS and iMLS-A isolates tested had theermAM (ermB) gene, whereas all iMLS-B and iMLS-C isolates had the ermTR gene (neither methylase gene was found in isolates of other groups). The M isolates had only the macrolide efflux (mefA) gene, which was also found in variable proportions of cMLS, iMLS-A, iMLS-B, and iMLS-C isolates. The three iMLS subtypes were easily differentiated by a triple-disk test set up by adding a josamycin disk to the erythromycin and clindamycin disks of the conventional double-disk test. Tetracycline resistance was not detected in any isolate of the iMLS-A subtype, whereas it was observed in over 90% of both iMLS-B and iMLS-C isolates.


2009 ◽  
Vol 54 (3) ◽  
pp. 1232-1236 ◽  
Author(s):  
Mirva Lehtopolku ◽  
Ulla-Maija Nakari ◽  
Pirkko Kotilainen ◽  
Pentti Huovinen ◽  
Anja Siitonen ◽  
...  

ABSTRACT There is a paucity of information regarding antimicrobial agents that are suitable to treat severe infections caused by multidrug-resistant Campylobacter spp. Our aim was to identify agents that are potentially effective against multiresistant Campylobacter strains. The in vitro activities of 20 antimicrobial agents against 238 Campylobacter strains were analyzed by determining MICs by the agar plate dilution method or the Etest. These strains were selected from 1,808 Campylobacter isolates collected from Finnish patients between 2003 and 2005 and screened for macrolide susceptibility by using the disk diffusion test. The 238 strains consisted of 183 strains with erythromycin inhibition zone diameters of ≤23 mm and 55 strains with inhibition zone diameters of >23 mm. Of the 238 Campylobacter strains, 19 were resistant to erythromycin by MIC determinations (MIC ≥ 16 μg/ml). Given that the resistant strains were identified among the collection of 1,808 isolates, the frequency of erythromycin resistance was 1.1%. All erythromycin-resistant strains were multidrug resistant, with 18 (94.7%) of them being resistant to ciprofloxacin (MIC ≥ 4 μg/ml). The percentages of resistance to tetracycline and amoxicillin-clavulanic acid (co-amoxiclav) were 73.7% and 31.6%, respectively. All macrolide-resistant strains were susceptible to imipenem, meropenem, and tigecycline. Ten (52.6%) multiresistant strains were identified as being Campylobacter jejuni strains, and 9 (47.4%) were identified as being C. coli strains. These data demonstrate that the incidence of macrolide resistance was low but that the macrolide-resistant Campylobacter strains were uniformly multidrug resistant. In addition to the carbapenems, tigecycline was also highly effective against these multidrug-resistant Campylobacter strains in vitro. Its efficacy for the treatment of human campylobacteriosis should be evaluated in clinical trials.


2007 ◽  
Vol 70 (3) ◽  
pp. 729-735 ◽  
Author(s):  
SIMON LÉVESQUE ◽  
ERIC FROST ◽  
SOPHIE MICHAUD

This study compares the occurrence of antimicrobial resistance to erythromycin, ciprofloxacin, and tetracycline among 384 Campylobacter jejuni isolates from humans (245), fresh whole retail chickens (56), raw milk (33), and environmental water (41) collected between 2000 and 2003 in Québec, Canada. Resistance to ciprofloxacin was significantly more frequent in human isolates acquired abroad than in those acquired locally (50 versus 5.9%; P < 0.001); ciprofloxacin resistance was almost absent in water, chicken, and raw milk isolates. In contrast, resistance to erythromycin was significantly more common in chicken than in locally acquired human isolates (16 versus 3.0%, respectively; P < 0.001); no erythromycin resistance was found among water, raw milk, and human isolates acquired abroad. Resistance to tetracycline was significantly more common in chicken and human isolates acquired locally (58.9 and 45.8%, respectively) than in raw milk and water isolates (9.1 and 7.3%, respectively, P < 0.001). Tetracycline resistance was also observed in 44.4% of human isolates acquired abroad. No human isolate was resistant to both ciprofloxacin and erythromycin, but one chicken isolate was resistant to all three antimicrobial agents. Our results suggest that from 2000 to 2003 in Québec, antimicrobial resistance remained stable among locally acquired C. jejuni human clinical isolates and might even have decreased. However, the high erythromycin resistance rate observed among chicken isolates is concerning because of the risk of transmission of such isolates to humans. Additional studies are needed to monitor trends in antimicrobial resistance among food, environment, and human C. jejuni isolates as well as antibiotic use in animals.


2001 ◽  
Vol 45 (12) ◽  
pp. 3504-3508 ◽  
Author(s):  
Joyce C. S. de Azavedo ◽  
Mary McGavin ◽  
Carla Duncan ◽  
Donald E. Low ◽  
Allison McGeer

ABSTRACT Macrolide resistance has been demonstrated in group B streptococcus (GBS), but there is limited information regarding mechanisms of resistance and their prevalence. We determined these in GBS obtained from neonatal blood cultures and vaginal swabs from pregnant women. Of 178 isolates from cases of neonatal GBS sepsis collected from 1995 to 1998, 8 and 4.5% were resistant to erythromycin and clindamycin, respectively, and one isolate showed intermediate penicillin resistance (MIC, 0.25 μg/ml). Of 101 consecutive vaginal or rectal/vaginal isolates collected in 1999, 18 and 8% were resistant to erythromycin and clindamycin, respectively. Tetracycline resistance was high (>80%) among both groups of isolates. Of 32 erythromycin-resistant isolates, 28 possessed the ermmethylase gene (7 ermB and 21 ermTR/ermA) and 4 harbored the mefA gene; one isolate harbored both genes. One isolate which was susceptible to erythromycin but resistant to clindamycin (MIC, 4 μg/ml) was found to have thelinB gene, previously identified only inEnterococcus faecium. The mreA gene was found in all the erythromycin-resistant strains as well as in 10 erythromycin-susceptible strains. The rate of erythromycin resistance increased from 5% in 1995–96 to 13% in 1998–99, which coincided with an increase in macrolide usage during that time.


1999 ◽  
Vol 43 (1) ◽  
pp. 48-52 ◽  
Author(s):  
Janne Kataja ◽  
Pentti Huovinen ◽  
Mikael Skurnik ◽  
Helena Seppälä ◽  

Streptococcus pyogenes isolates (group A streptococcus) of different erythromycin resistance phenotypes were collected from all over Finland in 1994 and 1995 and studied; they were evaluated for their susceptibilities to 14 antimicrobial agents (396 isolates) and the presence of different erythromycin resistance genes (45 isolates). The erythromycin-resistant isolates with the macrolide-resistant but lincosamide- and streptogramin B-susceptible phenotype (M phenotype) were further studied for their plasmid contents and the transferability of resistance genes. Resistance to antimicrobial agents other than macrolides, clindamycin, tetracycline, and chloramphenicol was not found. When compared to our previous study performed in 1990, the rate of resistance to tetracycline increased from 10 to 93% among isolates with the inducible resistance (IR) phenotype of macrolide, lincosamide, and streptogramin B (MLSB) resistance. Tetracycline resistance was also found among 75% of the MLSB-resistant isolates with the constitutive resistance (CR) phenotype. Resistance to chloramphenicol was found for the first time in S. pyogenes in Finland; 3% of the isolates with the IR phenotype were resistant. All the chloramphenicol-resistant isolates were also resistant to tetracycline. Detection of erythromycin resistance genes by PCR indicated that, with the exception of one isolate with the CR phenotype, all M-phenotype isolates had the macrolide efflux (mefA) gene and all the MLSB-resistant isolates had the erythromycin resistance methylase (ermTR) gene; the isolate with the CR phenotype contained the ermB gene. No plasmid DNA could be isolated from the M-phenotype isolates, but the mefA gene was transferred by conjugation.


2021 ◽  
Vol 9 (1) ◽  
pp. 98
Author(s):  
Seon Young Park ◽  
Mingyung Lee ◽  
Se Ra Lim ◽  
Hyemin Kwon ◽  
Ye Seul Lee ◽  
...  

S. bovis/S. equinus complex (SBSEC) includes lactic acid-producing bacteria considered as the causative agent associated with acute rumen lactic acidosis in intensive ruminants. Considering the limited information on the detailed characteristics and diversity of SBSEC in Korea and the emergence of antimicrobial resistance (AMR), we investigated the diversity of SBSEC from domestic ruminants and verified the presence of antimicrobial resistance genes (ARGs) against several antimicrobials with their phenotypic resistance. Among 51 SBSEC isolates collected, two SBSEC members (S. equinus and S. lutetiensis) were identified; sodA-based phylogenetic analyses and comparisons of overall genome relatedness revealed potential plasticity and diversity. The AMR rates of these SBSEC against erythromycin, clindamycin, and tetracycline were relatively lower than those of other SBSEC isolates of a clinical origin. An investigation of the ARGs against those antimicrobials indicated that tetracycline resistance of SBSECs generally correlated with the presence of tet(M)-possessing Tn916-like transposon. However, no correlation between the presence of ARGs and phenotypic resistance to erythromycin and clindamycin was observed. Although a limited number of animals and their SBSEC isolates were examined, this study provides insights into the potential intraspecies biodiversity of ruminant-origin SBSEC and the current status on antimicrobial resistance of the bacteria in the Korean livestock industry.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Bai Wei ◽  
Min Kang

We investigated the molecular mechanisms underlying macrolide resistance in 38 strains ofCampylobacterisolated from poultry. Twenty-seven strains were resistant to azithromycin and erythromycin, five showed intermediate azithromycin resistance and erythromycin susceptibility, and six showed azithromycin resistance and erythromycin susceptibility. FourCampylobacter jejuniand sixCampylobacter colistrains had azithromycin MICs which were 8–16 and 2–8-fold greater than those of erythromycin, respectively. The A2075G mutation in the 23S rRNA gene was detected in 11 resistant strains with MICs ranging from 64 to ≥ 512μg/mL. Mutations including V137A, V137S, and a six-amino acid insertion (114-VAKKAP-115) in ribosomal protein L22 were detected in theC. jejunistrains. Erythromycin ribosome methylase B-erm(B) was not detected in any strain. All strains except three showed increased susceptibility to erythromycin with twofold to 256-fold MIC change in the presence of phenylalanine arginine ß-naphthylamide (PAßN); the effects of PAßN on azithromycin MICs were limited in comparison to those on erythromycin MICs, and 13 strains showed no azithromycin MIC change in the presence of PAßN. Differences between azithromycin and erythromycin resistance and macrolide resistance phenotypes and genotypes were observed even in highly resistant strains. Further studies are required to better understand macrolide resistance inCampylobacter.


mBio ◽  
2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Jake Everett ◽  
Keith Turner ◽  
Qiuxian Cai ◽  
Vernita Gordon ◽  
Marvin Whiteley ◽  
...  

ABSTRACT Environmental conditions affect bacterial behavior and can greatly influence the course of an infection. However, the environmental cues that elicit bacterial responses in specific infection sites are relatively unknown. Pseudomonas aeruginosa is ubiquitous in nature and typically innocuous. However, it is also one of the most prevalent causes of fatal sepsis in burn wound patients. The aim of this study was to determine the impact of environmental factors, specifically the availability of arginine, on the pathogenesis of P. aeruginosa in burn wound infections. Comparison of burned versus noninjured tissue revealed that l-arginine (l-Arg) was significantly depleted in burn wounds as a consequence of elevated arginase produced by myeloid-derived suppressor cells. We also observed that l-Arg was a potent chemoattractant for P. aeruginosa, and while low concentrations of l-Arg increased P. aeruginosa’s swimming motility, high concentrations resulted in diminished swimming. Based on these observations, we tested whether the administration of exogenous l-Arg into the burn wound could attenuate the virulence of P. aeruginosa in thermally injured mice. Administration of l-Arg resulted in decreased P. aeruginosa spread and sepsis and increased animal survival. Taken together, these data demonstrate that the availability of environmental arginine greatly influences the virulence of P. aeruginosa in vivo and may represent a promising phenotype-modulating tool for future therapeutic avenues. IMPORTANCE Despite our growing understanding of the pathophysiology of burn wounds and the evolution of techniques and practices to manage infections, sepsis remains a significant medical concern for burn patients. P. aeruginosa continues to be a leader among all causes of bacteremic infections due to its tendency to cause complications in immunocompromised patients and its ubiquitous presence in the hospital setting. With the unforgiving emergence of multidrug-resistant strains, it is critical that alternative strategies to control or prevent septic infections in burn patients be developed in parallel with novel antimicrobial agents. In this study, we observed that administration of l-Arg significantly reduced bacterial spread and sepsis in burned mice infected with P. aeruginosa. Given the safety of l-Arg in high doses and its potential wound-healing benefits, this conditionally essential amino acid may represent a useful tool to modulate bacterial behavior in vivo and prevent sepsis in burn patients. IMPORTANCE Despite our growing understanding of the pathophysiology of burn wounds and the evolution of techniques and practices to manage infections, sepsis remains a significant medical concern for burn patients. P. aeruginosa continues to be a leader among all causes of bacteremic infections due to its tendency to cause complications in immunocompromised patients and its ubiquitous presence in the hospital setting. With the unforgiving emergence of multidrug-resistant strains, it is critical that alternative strategies to control or prevent septic infections in burn patients be developed in parallel with novel antimicrobial agents. In this study, we observed that administration of l-Arg significantly reduced bacterial spread and sepsis in burned mice infected with P. aeruginosa. Given the safety of l-Arg in high doses and its potential wound-healing benefits, this conditionally essential amino acid may represent a useful tool to modulate bacterial behavior in vivo and prevent sepsis in burn patients.


Sign in / Sign up

Export Citation Format

Share Document