scholarly journals Limonene Arrests Parasite Development and Inhibits Isoprenylation of Proteins in Plasmodium falciparum

2001 ◽  
Vol 45 (9) ◽  
pp. 2553-2558 ◽  
Author(s):  
Ivan Cruz Moura ◽  
Gerhard Wunderlich ◽  
Maria L. Uhrig ◽  
Alicia S. Couto ◽  
Valnice J. Peres ◽  
...  

ABSTRACT Isoprenylation is an essential protein modification in eukaryotic cells. Herein, we report that in Plasmodium falciparum, a number of proteins were labeled upon incubation of intraerythrocytic forms with either [3H]farnesyl pyrophosphate or [3H]geranylgeranyl pyrophosphate. By thin-layer chromatography, we showed that attached isoprenoids are partially modified to dolichol and other, uncharacterized, residues, confirming active isoprenoid metabolism in this parasite. Incubation of blood-stage P. falciparum treated with the isoprenylation inhibitor limonene significantly decreased the parasites' progression from the ring stage to the trophozoite stage and at 1.22 mM, 50% of the parasites died after the first cycle. Using Ras- and Rap-specific monoclonal antibodies, putative Rap and Ras proteins of P. falciparum were immunoprecipitated. Upon treatment with 0.5 mM limonene, isoprenylation of these proteins was significantly decreased, possibly explaining the observed arrest of parasite development.

1999 ◽  
Vol 341 (3) ◽  
pp. 629-637 ◽  
Author(s):  
Alicia S. COUTO ◽  
Emilia A. KIMURA ◽  
Valnice J. PERES ◽  
Maria L. UHRIG ◽  
Alejandro M. KATZIN

N-glycosylation of proteins is required for the intra-erythrocytic schizogony of Plasmodium falciparum. In eukaryotic cells, this process involves the transfer of oligosaccharides from a dolichyl pyrophosphate derivative to asparagine residues. We have identified dolichol, dolichyl phosphate and dolichyl pyrophosphate species of 11 and 12 isoprenoid residues by metabolic labelling with [3H]farnesyl pyrophosphate, [3H]geranylgeranyl pyrophosphate and [14C]acetate in the different intra-erythrocytic stages of P. falciparum. This is the first demonstration of short-chain dolichols in the phylum Apicomplexa. The results demonstrate the presence of an active isoprenoid pathway in the intra-erythrocytic stages of P. falciparum. Parasites treated with mevastatin, a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, show depressed biosynthesis of dolichol, dolichyl phosphate and isoprenoid pyrophosphate. This effect is observed in all intra-erythrocytic stages of the parasite life cycle, but is most pronounced in the ring stage. N-linked glycosylation of proteins was inhibited in the ring and young-trophozoite stages after mevastatin treatment of parasite cultures. Therefore the isoprenoid pathway may represent a different approach to the development of new anti-malarial drugs.


2014 ◽  
Vol 58 (8) ◽  
pp. 4935-4937 ◽  
Author(s):  
Chanaki Amaratunga ◽  
Benoit Witkowski ◽  
Dalin Dek ◽  
Vorleak Try ◽  
Nimol Khim ◽  
...  

ABSTRACTReducedPlasmodium falciparumsensitivity to short-course artemisinin (ART) monotherapy manifests as a long parasite clearance half-life. We recently defined three parasite founder populations with long half-lives in Pursat, western Cambodia, where reduced ART sensitivity is prevalent. Using the ring-stage survival assay, we show that these founder populations have reduced ART sensitivityin vitroat the early ring stage of parasite development and that a genetically admixed population contains subsets of parasites with normal or reduced ART sensitivity.


2013 ◽  
Vol 59 (7) ◽  
pp. 485-493 ◽  
Author(s):  
Hiroko Asahi ◽  
Mohammed Essa Marghany Tolba ◽  
Masanobu Tanabe ◽  
Hiroshi Ohmae

Malaria continues to be a devastating disease. We investigated the factors that control intraerythrocytic development of the parasite Plasmodium falciparum by using a chemically defined medium (CDM) containing non-esterified fatty acid(s) (NEFA) and phospholipids with specific fatty acid moieties, to identify substances crucial for parasite development. Different NEFAs in the CDM played distinct roles by altering the development of the parasite at various stages, with effects ranging from complete growth to growth arrest at the ring stage. We used genome-wide transcriptome profiling to identify genes that were differentially expressed among the different developmental stages of the parasite, cultured in the presence of various NEFAs. We predicted 26 transcripts that were associated with the suppression of schizogony, of which 5 transcripts, including merozoite surface protein 2, a putative DEAD/DEAH box RNA helicase, serine repeat antigen 3, a putative copper channel, and palmitoyl acyltransferase, were particularly associated with blockage of trophozoite progression from the ring stage. Furthermore, the involvement of copper ions in developmental arrest was detected by copper-ion-chelating methods, implying a critical function of copper homeostasis in the early growth stage of the parasite. These results should help to elucidate the mechanisms behind the development of P. falciparum.


Author(s):  
Yanwei Qi ◽  
Yuhong Zhang ◽  
Quankai Mu ◽  
Guixing Zheng ◽  
Mengxin Zhang ◽  
...  

The development of Plasmodium parasites, a causative agent of malaria, requests two hosts and the completion of 11 different parasite stages during development. Therefore, an efficient and fast response of parasites to various complex environmental changes, such as ambient temperature, pH, ions, and nutrients, is essential for parasite development and survival. Among many of these environmental changes, temperature is a decisive factor for parasite development and pathogenesis, including the thermoregulation of rRNA expression, gametogenesis, and parasite sequestration in cerebral malaria. However, the exact mechanism of how Plasmodium parasites rapidly respond and adapt to temperature change remains elusive. As a fundamental and pervasive regulator of gene expression, RNA structure can be a specific mechanism for fine tuning various biological processes. For example, dynamic and temperature-dependent changes in RNA secondary structures can control the expression of different gene programs, as shown by RNA thermometers. In this study, we applied the in vitro and in vivo transcriptomic-wide secondary structurome approach icSHAPE to measure parasite RNA structure changes with temperature alteration at single-nucleotide resolution for ring and trophozoite stage parasites. Among 3,000 probed structures at different temperatures, our data showed structural changes in the global transcriptome, such as S-type rRNA, HRPII gene, and the erythrocyte membrane protein family. When the temperature drops from 37°C to 26°C, most of the genes in the trophozoite stage cause significantly more changes to the RNA structure than the genes in the ring stage. A multi-omics analysis of transcriptome data from RNA-seq and RNA structure data from icSHAPE reveals that the specific RNA secondary structure plays a significant role in the regulation of transcript expression for parasites in response to temperature changes. In addition, we identified several RNA thermometers (RNATs) that responded quickly to temperature changes. The possible thermo-responsive RNAs in Plasmodium falciparum were further mapped. To this end, we identified dynamic and temperature-dependent RNA structural changes in the P. falciparum transcriptome and performed a comprehensive characterization of RNA secondary structures over the course of temperature stress in blood stage development. These findings not only contribute to a better understanding of the function of the RNA secondary structure but may also provide novel targets for efficient vaccines or drugs.


1983 ◽  
Vol 97 (3) ◽  
pp. 795-802 ◽  
Author(s):  
J Gruenberg ◽  
D R Allred ◽  
I W Sherman

The nature of the surface deformations of erythrocytes infected with the human malaria parasite Plasmodium falciparum was analyzed using scanning electron microscopy at two stages of the 48-h parasite maturation cycle. Infected cells bearing trophozoite-stage parasites (24-36 h) had small protrusions (knobs), with diameters varying from 160 to 110 nm, and a density ranging from 10 to 35 knobs X micron-2. When parasites were fully mature (schizont stage, 40-44 h), knob size decreased (100-70 nm), whereas density increased (45-70 knobs X micron-2). Size and density of the knobs varied inversely, suggesting that knob production (a) occurred throughout intraerythrocytic parasite development from trophozoite to schizont and (b) was related to dynamic changes of the erythrocyte membrane. Variation in the distribution of the knobs over the red cell surface was observed during parasite maturation. At the early trophozoite stage of parasite development, knobs appeared to be formed in particular domains of the cell surface. As the density of knobs increased and they covered the entire cell surface, their lateral distribution was dispersive (more-than-random); this was particularly evident at the schizont stage. Regional surface patterns of knobs (rows, circles) were seen throughout parasite development. The nature of the dynamic changes that occurred at the red cell surface during knob formation, as well as the nonrandom distribution of knobs, suggested that the red cell cytoskeleton may have played a key role in knob formation and patterning.


Blood ◽  
2002 ◽  
Vol 100 (3) ◽  
pp. 1048-1054 ◽  
Author(s):  
Manjit Hanspal ◽  
Meenakshi Dua ◽  
Yuichi Takakuwa ◽  
Athar H. Chishti ◽  
Akiko Mizuno

Abstract Plasmodium falciparum–derived cysteine protease falcipain-2 cleaves host erythrocyte hemoglobin at acidic pH and specific components of the membrane skeleton at neutral pH. Analysis of stage-specific expression of these 2 proteolytic activities of falcipain-2 shows that hemoglobin-hydrolyzing activity is maximum in early trophozoites and declines rapidly at late stages, whereas the membrane skeletal protein hydrolyzing activity is markedly increased at the late trophozoite and schizont stages. Among the erythrocyte membrane skeletal proteins, ankyrin and protein 4.1 are cleaved by native and recombinant falcipain-2 near their C-termini. To identify the precise peptide sequence at the hydrolysis site of protein 4.1, we used a recombinant construct of protein 4.1 as substrate followed by MALDI-MS analysis of the cleaved product. We show that falcipain-2–mediated cleavage of protein 4.1 occurs immediately after lysine 437, which lies within a region of the spectrin–actin-binding domain critical for erythrocyte membrane stability. A 16-mer peptide containing the cleavage site completely inhibited the enzyme activity and blocked falcipain-2–induced fragmentation of erythrocyte ghosts. Based on these results, we propose that falcipain-2 cleaves hemoglobin in the acidic food vacuole at the early trophozoite stage, whereas it cleaves specific components of the red cell skeleton at the late trophozoite and schizont stages. It is the proteolysis of skeletal proteins that causes membrane instability, which, in turn, facilitates parasite release in vivo.


2015 ◽  
Vol 14 (4) ◽  
pp. 415-426 ◽  
Author(s):  
Katharine J. Milani ◽  
Timothy G. Schneider ◽  
Theodore F. Taraschi

ABSTRACT Hemoglobin degradation during the asexual cycle of Plasmodium falciparum is an obligate process for parasite development and survival. It is established that hemoglobin is transported from the host erythrocyte to the parasite digestive vacuole (DV), but this biological process is not well characterized. Three-dimensional reconstructions made from serial thin-section electron micrographs of untreated, trophozoite-stage P. falciparum -infected erythrocytes (IRBC) or IRBC treated with different pharmacological agents provide new insight into the organization and regulation of the hemoglobin transport pathway. Hemoglobin internalization commences with the formation of cytostomes from localized, electron-dense collars at the interface of the parasite plasma and parasitophorous vacuolar membranes. The cytostomal collar does not function as a site of vesicle fission but rather serves to stabilize the maturing cytostome. We provide the first evidence that hemoglobin transport to the DV uses an actin-myosin motor system. Short-lived, hemoglobin-filled vesicles form from the distal end of the cytostomes through actin and dynamin-mediated processes. Results obtained with IRBC treated with N -ethylmaleimide (NEM) suggest that fusion of hemoglobin-containing vesicles with the DV may involve a soluble NEM-sensitive factor attachment protein receptor-dependent mechanism. In this report, we identify new key components of the hemoglobin transport pathway and provide a detailed characterization of its morphological organization and regulation.


Blood ◽  
1998 ◽  
Vol 92 (7) ◽  
pp. 2527-2534 ◽  
Author(s):  
Marina Cappadoro ◽  
Giuliana Giribaldi ◽  
Estella O'Brien ◽  
Franco Turrini ◽  
Franca Mannu ◽  
...  

In population-based studies it has been established that inherited deficiency of erythrocyte (E) glucose-6-phosphate dehydrogenase (G6PD) confers protection against severe Plasmodium falciparum (P falciparum) malaria. Impaired growth of parasites in G6PD-deficient E in vitro has been reported in some studies, but not in others. In a systematic analysis, we have found that with five different strains ofP falciparum (FCR-3, KI, C10, HB3B, and T9/96), there was no significant difference in either invasion or maturation when the parasites were grown in either normal or G6PD-deficient (Mediterranean variant) E. With all of these strains and at different maturation stages, we were unable to detect any difference in the amount of P falciparum–specific G6PD mRNA in normal versus deficient parasitized E. The rate of 14C-CO2 production from D-[1-14C] glucose (which closely reflects intracellular activity of G6PD) contributed by the parasite was very similar in intact normal and deficient E. By contrast, in studies of phagocytosis of parasitized E by human adherent monocytes, we found that when the parasites were at the ring stage (ring-stage parasitized E [RPE]), deficient RPE were phagocytosed 2.3 times more intensely than normal RPE (P = .001), whereas there was no difference when the parasites were at the more mature trophozoite stage (trophozoite-stage parasitized E [TPE]). Phagocytic removal markers (autologous IgG and complement C3 fragments) were significantly higher in deficient RPE than in normal RPE, while they were very similar in normal and deficient TPE. The level of reduced glutathione was remarkably lower in deficient RPE compared with normal RPE. We conclude that impaired antioxidant defense in deficient RPE may be responsible for membrane damage followed by phagocytosis. Because RPE, unlike TPE, are nontoxic to phagocytes, the increased removal by phagocytosis of RPE would reduce maturation to TPE and to schizonts and may be a highly efficient mechanism of malaria resistance in deficient subjects.


Blood ◽  
1998 ◽  
Vol 92 (7) ◽  
pp. 2527-2534 ◽  
Author(s):  
Marina Cappadoro ◽  
Giuliana Giribaldi ◽  
Estella O'Brien ◽  
Franco Turrini ◽  
Franca Mannu ◽  
...  

Abstract In population-based studies it has been established that inherited deficiency of erythrocyte (E) glucose-6-phosphate dehydrogenase (G6PD) confers protection against severe Plasmodium falciparum (P falciparum) malaria. Impaired growth of parasites in G6PD-deficient E in vitro has been reported in some studies, but not in others. In a systematic analysis, we have found that with five different strains ofP falciparum (FCR-3, KI, C10, HB3B, and T9/96), there was no significant difference in either invasion or maturation when the parasites were grown in either normal or G6PD-deficient (Mediterranean variant) E. With all of these strains and at different maturation stages, we were unable to detect any difference in the amount of P falciparum–specific G6PD mRNA in normal versus deficient parasitized E. The rate of 14C-CO2 production from D-[1-14C] glucose (which closely reflects intracellular activity of G6PD) contributed by the parasite was very similar in intact normal and deficient E. By contrast, in studies of phagocytosis of parasitized E by human adherent monocytes, we found that when the parasites were at the ring stage (ring-stage parasitized E [RPE]), deficient RPE were phagocytosed 2.3 times more intensely than normal RPE (P = .001), whereas there was no difference when the parasites were at the more mature trophozoite stage (trophozoite-stage parasitized E [TPE]). Phagocytic removal markers (autologous IgG and complement C3 fragments) were significantly higher in deficient RPE than in normal RPE, while they were very similar in normal and deficient TPE. The level of reduced glutathione was remarkably lower in deficient RPE compared with normal RPE. We conclude that impaired antioxidant defense in deficient RPE may be responsible for membrane damage followed by phagocytosis. Because RPE, unlike TPE, are nontoxic to phagocytes, the increased removal by phagocytosis of RPE would reduce maturation to TPE and to schizonts and may be a highly efficient mechanism of malaria resistance in deficient subjects.


2004 ◽  
Vol 48 (7) ◽  
pp. 2502-2509 ◽  
Author(s):  
Herbert Rodrigues Goulart ◽  
Emília A. Kimura ◽  
Valnice J. Peres ◽  
Alicia S. Couto ◽  
Fulgencio A. Aquino Duarte ◽  
...  

ABSTRACT Development of new drugs is one of the strategies for malaria control. The biosynthesis of several isoprenoids in Plasmodium falciparum was recently described. Interestingly, some intermediates and final products biosynthesized by this pathway in mammals differ from those biosynthesized in P. falciparum. These facts prompted us to evaluate various terpenes, molecules with a similar chemical structure to the intermediates of the isoprenoids pathway, as potential antimalarial drugs. Different terpenes and S-farnesylthiosalicylic acid were tested on cultures of the intraerythrocytic stages of P. falciparum, and the 50% inhibitory concentrations for each one were found: farnesol, 64 μM; nerolidol, 760 nM; limonene, 1.22 mM; linalool, 0.28 mM; and S-farnesylthiosalicylic acid, 14 μM. All the terpenes tested inhibited dolichol biosynthesis in the trophozoite and schizont stages when [1-(n)-3H]farnesyl pyrophosphate triammonium salt ([3H]FPP) was used as precursor. Farnesol, nerolidol, and linalool showed stronger inhibitory activity on the biosynthesis of the isoprenic side chain of the benzoquinone ring of ubiquinones in the schizont stage. Treatment of schizont stages with S-farnesylthiosalicylic acid led to a decrease in intensity of the band corresponding a p21 ras protein. The inhibitory effect of terpenes and S-farnesylthiosalicylic acid on the biosynthesis of both dolichol and the isoprenic side chain of ubiquinones and the isoprenylation of proteins in the intraerythrocytic stages of P. falciparum appears to be specific, because overall protein biosynthesis was not affected. Combinations of some terpenes or S-farnesylthiosalicylic acid tested in this work with other antimalarial drugs, like fosmidomycin, could be a new strategy for the treatment of malaria.


Sign in / Sign up

Export Citation Format

Share Document