scholarly journals Neuraminidase Inhibitor-Resistant Influenza Viruses May Differ Substantially in Fitness and Transmissibility

2005 ◽  
Vol 49 (10) ◽  
pp. 4075-4084 ◽  
Author(s):  
Hui-Ling Yen ◽  
Louise M. Herlocher ◽  
Erich Hoffmann ◽  
Mikhail N. Matrosovich ◽  
Arnold S. Monto ◽  
...  

ABSTRACT Mutations of the conserved residues of influenza virus neuraminidase (NA) that are associated with NA inhibitor (NAI) resistance decrease the sialidase activity and/or stability of the NA, thus compromising viral fitness. In fact, clinically derived NAI-resistant variants with different NA mutations have shown different transmissibilities in ferrets (M. L. Herlocher, R. Truscon, S. Elias, H. Yen, N. A. Roberts, S. E. Ohmit, and A. S. Monto, J. Infect. Dis. 190:1627-1630, 2004). Molecular characterization of mutant viruses that have a homogeneous genetic background is required to determine the effect of single mutations at conserved NA residues. We generated recombinant viruses containing either the wild-type NA (RG WT virus) or a single amino acid change at NA residue 119 (RG E119V-NA virus) or 292 (RG R292K-NA virus) in the A/Wuhan/359/95 (H3N2) influenza virus background by reverse genetics. Both mutants showed decreased sensitivity to oseltamivir carboxylate, and the RG R292K-NA virus showed cross-resistance to zanamivir. We also observed differences between the two mutants in NA enzymatic activity and thermostability. The R292K mutation caused greater reduction of sialidase activity and thermostability than the E119V mutation. The NA defect caused by the R292K mutation was associated with compromised growth and transmissibility, whereas the growth and transmissibility of the RG E119V-NA virus were comparable to those of RG WT virus. Our results suggest that NAI-resistant influenza virus variants may differ substantially in fitness and transmissibility, depending on different levels of NA functional loss.

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 12
Author(s):  
Jan Haviernik ◽  
Ludek Eyer ◽  
Antoine Nougairède ◽  
Marie Uhlířová ◽  
Jean-Sélim Driouich ◽  
...  

Tick-borne encephalitis virus (TBEV) is a pathogen that causes severe human neuroinfections in Europe and Asia for which there is currently no specific therapy. The adenosine analogue galidesivir (BCX4430), a broad-spectrum RNA virus inhibitor, has entered a phase 1 clinical safety and pharmacokinetics study in healthy subjects and is under clinical development for treatment of Ebola and yellow fever virus infections. Moreover, galidesivir also inhibits the reproduction of TBEV and numerous other medically important flaviviruses. Until now, studies of this antiviral agent have not yielded resistant viruses. In our study, we performed serial in vitro passaging of TBEV in the presence of increasing concentrations of galidesivir (up to 50 μM), which resulted in the generation of two drug-resistant TBEV mutants. The first TBEV mutant was characterized by a single amino acid change, E460D. The other carried two amino acid changes, E460D and Y453H. Both mutations mapped to the active site of the viral RNA-dependent RNA polymerase (RdRp). Galidesivir-resistant TBEV exhibited no cross-resistance to structurally different antiviral nucleoside analogues, such as 7-deaza-2′-C-methyladenosine, 2′-C-methyladenosine, and 4′-azido-aracytidine. Although the E460D substitution led to only a subtle decrease in viral fitness in cell culture, galidesivir-resistant TBEV was highly attenuated in vivo, with a 100% survival rate and no clinical signs observed in infected mice. Furthermore, no virus was detected in the sera, spleen, or brain of mice inoculated with the galidesivir-resistant TBEV. By contrast, infection with wild-type virus resulted in fatal infections for all animals. Our results contribute to understanding the molecular basis of galidesivir antiviral activity, flavivirus resistance to nucleoside inhibitors, and the potential contribution of viral RdRp to flavivirus neurovirulence.


2011 ◽  
Vol 55 (5) ◽  
pp. 2004-2010 ◽  
Author(s):  
M. Naughtin ◽  
J. C. Dyason ◽  
S. Mardy ◽  
S. Sorn ◽  
M. von Itzstein ◽  
...  

ABSTRACTThe evolution of the highly pathogenic H5N1 influenza virus produces genetic variations that can lead to changes in antiviral susceptibility and in receptor-binding specificity. In countries where the highly pathogenic H5N1 virus is endemic or causes regular epidemics, the surveillance of these changes is important for assessing the pandemic risk. In Cambodia between 2004 and 2010, there have been 26 outbreaks of highly pathogenic H5N1 influenza virus in poultry and 10 reported human cases, 8 of which were fatal. We have observed naturally occurring mutations in hemagglutinin (HA) and neuraminidase (NA) of Cambodian H5N1 viruses that were predicted to alter sensitivity to neuraminidase inhibitors (NAIs) and/or receptor-binding specificity. We tested H5N1 viruses isolated from poultry and humans between 2004 and 2010 for sensitivity to the NAIs oseltamivir (Tamiflu) and zanamivir (Relenza). All viruses were sensitive to both inhibitors; however, we identified a virus with a mildly decreased sensitivity to zanamivir and have predicted that a V149A mutation is responsible. We also identified a virus with a hemagglutinin A134V mutation, present in a subpopulation amplified directly from a human sample. Using reverse genetics, we verified that this mutation is adaptative for human α2,6-linked sialidase receptors. The importance of an ongoing surveillance of H5N1 antigenic variance and genetic drift that may alter receptor binding and sensitivities of H5N1 viruses to NAIs cannot be underestimated while avian influenza remains a pandemic threat.


2009 ◽  
Vol 83 (21) ◽  
pp. 11102-11115 ◽  
Author(s):  
Jamie L. Fornek ◽  
Laura Gillim-Ross ◽  
Celia Santos ◽  
Victoria Carter ◽  
Jerrold M. Ward ◽  
...  

ABSTRACT The transmission of H5N1 influenza viruses from birds to humans poses a significant public health threat. A substitution of glutamic acid for lysine at position 627 of the PB2 protein of H5N1 viruses has been identified as a virulence determinant. We utilized the BALB/c mouse model of H5N1 infection to examine how this substitution affects virus-host interactions and leads to systemic infection. Mice infected with H5N1 viruses containing lysine at amino acid 627 in the PB2 protein exhibited an increased severity of lesions in the lung parenchyma and the spleen, increased apoptosis in the lungs, and a decrease in oxygen saturation. Gene expression profiling revealed that T-cell receptor activation was impaired at 2 days postinfection (dpi) in the lungs of mice infected with these viruses. The inflammatory response was highly activated in the lungs of mice infected with these viruses and was sustained at 4 dpi. In the spleen, immune-related processes including NK cell cytotoxicity and antigen presentation were highly activated by 2 dpi. These differences are not attributable solely to differences in viral replication in the lungs but to an inefficient immune response early in infection as well. The timing and magnitude of the immune response to highly pathogenic influenza viruses is critical in determining the outcome of infection. The disruption of these factors by a single-amino-acid substitution in a polymerase protein of an influenza virus is associated with severe disease and correlates with the spread of the virus to extrapulmonary sites.


1991 ◽  
Vol 114 (3) ◽  
pp. 413-421 ◽  
Author(s):  
C B Brewer ◽  
M G Roth

In the polarized kidney cell line MDCK, the influenza virus hemagglutinin (HA) has been well characterized as a model for apically sorted membrane glycoproteins. Previous work from our laboratory has shown that a single amino acid change in the cytoplasmic sequence of HA converts it from a protein that is excluded from coated pits to one that is efficiently internalized. Using trypsin or antibodies to mark protein on the surface, we have shown in MDCK cells that HA containing this mutation is no longer transported to the apical surface but instead is delivered directly to the basolateral plasma membrane. We propose that a cytoplasmic feature similar to an endocytosis signal can cause exclusive basolateral delivery.


2018 ◽  
Author(s):  
Paulina Koszalka ◽  
Danielle Tilmanis ◽  
Merryn Roe ◽  
Dhanasekaran Vijaykrishna ◽  
Aeron Hurt

Baloxavir Marboxil (BXM) is an influenza polymerase inhibitor antiviral that binds to the endonuclease region in the PA subunit of influenza A and B viruses. To establish the baseline susceptibility of viruses circulating prior to licensure of BXM and to monitor for susceptibility post-BXM use, a cell culture-based focus reduction assay was developed to determine the susceptibility of 286 circulating seasonal influenza viruses, A(H1N1)pdm09, A(H3N2), B (Yamagata/Victoria) lineage viruses, including neuraminidase inhibitor (NAI) resistant viruses, to Baloxavir Acid (BXA), the active metabolic form of BXM. BXA was effective against all influenza subtypes tested with mean EC50 values (minimum-maximum) of 0.7 ± 0.5 nM (0.1-2.1 nM), 1.2 ± 0.6 nM (0.1- 2.4), 7.2 ± 3.5 nM (0.7-14.8), and 5.8 ± 4.5 nM (1.8-15.5) obtained for A(H1N1)pdm09, A(H3N2), B(Victoria lineage), and B(Yamagata lineage) influenza viruses, respectively. Using reverse genetics, amino acid substitutions known to alter BXA susceptibility were introduced into the PA protein resulting in EC50 fold change increases that ranged from 2 to 65. Our study demonstrates that currently circulating viruses are susceptible to BXA and that the newly developed focus reduction assay is well suited to susceptibility monitoring in reference laboratories.


2017 ◽  
Vol 91 (15) ◽  
Author(s):  
Sujit K. Mohanty ◽  
Bryan Donnelly ◽  
Phylicia Dupree ◽  
Inna Lobeck ◽  
Sarah Mowery ◽  
...  

ABSTRACT Rotavirus infection is one of the most common causes of diarrheal illness in humans. In neonatal mice, rhesus rotavirus (RRV) can induce biliary atresia (BA), a disease resulting in inflammatory obstruction of the extrahepatic biliary tract and intrahepatic bile ducts. We previously showed that the amino acid arginine (R) within the sequence SRL (amino acids 445 to 447) in the RRV VP4 protein is required for viral binding and entry into biliary epithelial cells. To determine if this single amino acid (R) influences the pathogenicity of the virus, we generated a recombinant virus with a single amino acid mutation at this site through a reverse genetics system. We demonstrated that the RRV mutant (RRVVP4-R446G) produced less symptomatology and replicated to lower titers both in vivo and in vitro than those seen with wild-type RRV, with reduced binding in cholangiocytes. Our results demonstrate that a single amino acid change in the RRV VP4 gene influences cholangiocyte tropism and reduces pathogenicity in mice. IMPORTANCE Rotavirus is the leading cause of diarrhea in humans. Rhesus rotavirus (RRV) can also lead to biliary atresia (a neonatal human disease) in mice. We developed a reverse genetics system to create a mutant of RRV (RRVVP4-R446G) with a single amino acid change in the VP4 protein compared to that of wild-type RRV. In vitro, the mutant virus had reduced binding and infectivity in cholangiocytes. In vivo, it produced fewer symptoms and lower mortality in neonatal mice, resulting in an attenuated form of biliary atresia.


2005 ◽  
Vol 79 (18) ◽  
pp. 12058-12064 ◽  
Author(s):  
Zejun Li ◽  
Hualan Chen ◽  
Peirong Jiao ◽  
Guohua Deng ◽  
Guobin Tian ◽  
...  

ABSTRACT We recently analyzed a series of H5N1 viruses isolated from healthy ducks in southern China since 1999 and found that these viruses had progressively acquired the ability to replicate and cause disease in mice. In the present study, we explored the genetic basis of this change in host range by comparing two of the viruses that are genetically similar but differ in their ability to infect mice and have different pathogenicity in mice. A/duck/Guangxi/22/2001 (DKGX/22) is nonpathogenic in mice, whereas A/duck/Guangxi/35/2001 (DKGX/35) is highly pathogenic. We used reverse genetics to create a series of single-gene recombinants that contained one gene from DKGX/22 and the remaining seven gene segments from DKGX/35. We find that the PA, NA, and NS genes of DKGX/22 could attenuate DKGX/35 virus to some extent, but PB2 of DKGX/22 virus attenuated the DKGX/35 virus dramatically, and an Asn-to-Asp substitution at position 701 of PB2 plays a key role in this function. Conversely, of the recombinant viruses in the DKGX/22 background, only the one that contains the PB2 gene of DKGX/35 was able to replicate in mice. A single amino acid substitution (Asp to Asn) at position 701 of PB2 enabled DKGX/22 to infect and become lethal for mice. These results demonstrate that amino acid Asn 701 of PB2 is one of the important determinants for this avian influenza virus to cross the host species barrier and infect mice, though the replication and lethality of H5N1 influenza viruses involve multiple genes and may result from a constellation of genes. Our findings may help to explain the expansion of the host range and lethality of the H5N1 influenza viruses to humans.


2014 ◽  
Vol 16 ◽  
Author(s):  
Siying Ye ◽  
Justin G. Evans ◽  
John Stambas

Reverse genetics systems allow artificial generation of non-segmented and segmented negative-sense RNA viruses, like influenza viruses, entirely from cloned cDNA. Since the introduction of reverse genetics systems over a decade ago, the ability to generate ‘designer’ influenza viruses in the laboratory has advanced both basic and applied research, providing a powerful tool to investigate and characterise host–pathogen interactions and advance the development of novel therapeutic strategies. The list of applications for reverse genetics has expanded vastly in recent years. In this review, we discuss the development and implications of this technique, including the recent controversy surrounding the generation of a transmissible H5N1 influenza virus. We will focus on research involving the identification of viral protein function, development of live-attenuated influenza virus vaccines, host–pathogen interactions, immunity and the generation of recombinant influenza virus vaccine vectors for the prevention and treatment of infectious diseases and cancer.


2021 ◽  
Vol 9 (6) ◽  
pp. 1196
Author(s):  
Chiara Medaglia ◽  
Arnaud Charles-Antoine Zwygart ◽  
Paulo Jacob Silva ◽  
Samuel Constant ◽  
Song Huang ◽  
...  

Influenza viruses are a leading cause of morbidity and mortality worldwide. These air-borne pathogens are able to cross the species barrier, leading to regular seasonal epidemics and sporadic pandemics. Influenza viruses also possess a high genetic variability, which allows for the acquisition of resistance mutations to antivirals. Combination therapies with two or more drugs targeting different mechanisms of viral replication have been considered an advantageous option to not only enhance the effectiveness of the individual treatments, but also reduce the likelihood of resistance emergence. Using an in vitro infection model, we assessed the barrier to viral resistance of a combination therapy with the neuraminidase inhibitor oseltamivir and human interferon lambda against the pandemic H1N1 A/Netherlands/602/2009 (H1N1pdm09) virus. We serially passaged the virus in a cell line derived from human bronchial epithelial cells in the presence or absence of increasing concentrations of oseltamivir alone or oseltamivir plus interferon lambda. While the treatment with oseltamivir alone quickly induced the emergence of antiviral resistance through a single mutation in the neuraminidase gene, the co-administration of interferon lambda delayed the emergence of drug-resistant influenza virus variants. Our results suggest a possible clinical application of interferon lambda in combination with oseltamivir to treat influenza.


Sign in / Sign up

Export Citation Format

Share Document