scholarly journals Effect of Glycosylation and Additional Domains on the Thermostability of a Family 10 Xylanase Produced by Thermopolyspora flexuosa

2009 ◽  
Vol 76 (1) ◽  
pp. 356-360 ◽  
Author(s):  
Sasikala Anbarasan ◽  
Janne Jänis ◽  
Marja Paloheimo ◽  
Mikko Laitaoja ◽  
Minna Vuolanto ◽  
...  

ABSTRACT The effects of different structural features on the thermostability of Thermopolyspora flexuosa xylanase XYN10A were investigated. A C-terminal carbohydrate binding module had only a slight effect, whereas a polyhistidine tag increased the thermostability of XYN10A xylanase. In contrast, glycosylation at Asn26, located in an exposed loop, decreased the thermostability of the xylanase. The presence of a substrate increased stability mainly at low pH.

2018 ◽  
Vol 85 (2) ◽  
Author(s):  
Fan Yang ◽  
He Li ◽  
Jie Sun ◽  
Xiaoyu Guo ◽  
Xinyu Zhang ◽  
...  

ABSTRACTUnder general aqueous conditions, xanthan appears in an ordered conformation, which makes its backbone largely resistant to degradation by known cellulases. Therefore, the xanthan degradation mechanism is still unclear because of the lack of an efficient hydrolase. Here, we report the catalytic properties of MiXen, a xanthan-degrading enzyme identified from the genusMicrobacterium. MiXen is a 952-amino-acid protein that is unique to strain XT11. Both the sequence and structural features suggested that MiXen belongs to a new branch of the GH9 family and has a multimodular structure in which a catalytic (α/α)6barrel is flanked by an N-terminal Ig-like domain and by a C-terminal domain that has very few homologues in sequence databases and functions as a carbohydrate-binding module (CBM). Based on circular dichroism, shear-dependent viscosity, and reducing sugar and gel permeation chromatography analysis, we demonstrated that recombinant MiXen efficiently and randomly cleaved glucosidic bonds within the highly ordered xanthan substrate. A MiXen mutant free of the C-terminal CBM domain partially lost its xanthan-hydrolyzing ability because of decreased affinity toward xanthan, indicating the CBM domain assisted MiXen in hydrolyzing highly ordered xanthan via recognizing and binding to the substrate. Furthermore, side chain substituents and the terminal mannosyl residue significantly influenced the activity of MiXen via the formation of barriers to enzymolysis. Overall, the results of this study provide insight into the hydrolysis mechanism and enzymatic properties of a novel endotype xanthanase that will benefit future applications.IMPORTANCEThis work characterized a novel endotype xanthanase, MiXen, and elucidated that the C-terminal carbohydrate-binding module of MiXen could drastically enhance the hydrolysis activity of the enzyme toward highly ordered xanthan. Both the sequence and structural analysis demonstrated that the catalytic domain and carbohydrate-binding module of MiXen belong to the novel branch of the GH9 family and CBMs, respectively. This xanthan cleaver can help further reveal the enzymolysis mechanism of xanthan and provide an efficient tool for the production of molecular modified xanthan with new physicochemical and physiological functions.


FEBS Journal ◽  
2015 ◽  
Vol 282 (22) ◽  
pp. 4341-4356 ◽  
Author(s):  
Renee M. Happs ◽  
Xiaoyang Guan ◽  
Michael G. Resch ◽  
Mark F. Davis ◽  
Gregg T. Beckham ◽  
...  

2004 ◽  
Vol 238 (1) ◽  
pp. 71-78
Author(s):  
Fernando M.V. Dias ◽  
Arun Goyal ◽  
Harry J. Gilbert ◽  
José A.M. Prates ◽  
Luís M.A. Ferreira ◽  
...  

2010 ◽  
Vol 192 (24) ◽  
pp. 6492-6493 ◽  
Author(s):  
Angel Angelov ◽  
Susanne Liebl ◽  
Meike Ballschmiter ◽  
Mechthild Bömeke ◽  
Rüdiger Lehmann ◽  
...  

ABSTRACT Spirochaeta thermophila is a thermophilic, free-living anaerobe that is able to degrade various α- and β-linked sugar polymers, including cellulose. We report here the complete genome sequence of S. thermophila DSM 6192, which is the first genome sequence of a thermophilic, free-living member of the Spirochaetes phylum. The genome data reveal a high density of genes encoding enzymes from more than 30 glycoside hydrolase families, a noncellulosomal enzyme system for (hemi)cellulose degradation, and indicate the presence of a novel carbohydrate-binding module.


2010 ◽  
Vol 114 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Toshifumi Yui ◽  
Hirohide Shiiba ◽  
Yuya Tsutsumi ◽  
Sachio Hayashi ◽  
Tatsuhiko Miyata ◽  
...  

2005 ◽  
Vol 18 (10) ◽  
pp. 497-501 ◽  
Author(s):  
Emily M. Kwan ◽  
Alisdair B. Boraston ◽  
Bradley W. McLean ◽  
Douglas G. Kilburn ◽  
R. Antony J. Warren

2018 ◽  
Vol 20 (12) ◽  
pp. 8278-8293 ◽  
Author(s):  
Adam Orłowski ◽  
Lior Artzi ◽  
Pierre-Andre Cazade ◽  
Melissabye Gunnoo ◽  
Edward A. Bayer ◽  
...  

Transformation of cellulose into monosaccharides can be achieved by hydrolysis of the cellulose chains, carried out by a special group of enzymes known as cellulases.


Sign in / Sign up

Export Citation Format

Share Document