scholarly journals Versatile Oxidase and Dehydrogenase Activities of Bacterial Pyranose 2-Oxidase Facilitate Redox Cycling with Manganese PeroxidaseIn Vitro

2019 ◽  
Vol 85 (13) ◽  
Author(s):  
Peter L. Herzog ◽  
Leander Sützl ◽  
Beate Eisenhut ◽  
Daniel Maresch ◽  
Dietmar Haltrich ◽  
...  

ABSTRACTPyranose 2-oxidase (POx) has long been accredited a physiological role in lignin degradation, but evidence to provide insights into the biochemical mechanisms and interactions is insufficient. There are ample data in the literature on the oxidase and dehydrogenase activities of POx, yet the biological relevance of this duality could not be established conclusively. Here we present a comprehensive biochemical and phylogenetic characterization of a novel pyranose 2-oxidase from the actinomycetous bacteriumKitasatospora aureofaciens(KaPOx) as well as a possible biomolecular synergism of this enzyme with peroxidases using phenolic model substratesin vitro. A phylogenetic analysis of both fungal and bacterial putative POx-encoding sequences revealed their close evolutionary relationship and supports a late horizontal gene transfer of ancestral POx sequences. We successfully expressed and characterized a novel bacterial POx gene fromK. aureofaciens, one of the putative POx genes closely related to well-known fungal POx genes. Its biochemical characteristics comply with most of the classical hallmarks of known fungal pyranose 2-oxidases, i.e., reactivity with a range of different monosaccharides as electron donors as well as activity with oxygen, various quinones, and complexed metal ions as electron acceptors. Thus,KaPOx shows the pronounced duality of oxidase and dehydrogenase similar to that of fungal POx. We further performed efficient redox cycling of aromatic lignin model compounds betweenKaPOx and manganese peroxidase (MnP). In addition, we found a Mn(III) reduction activity inKaPOx, which, in combination with its ability to provide H2O2, implies this and potentially other POx as complementary enzymatic tools for oxidative lignin degradation by specialized peroxidases.IMPORTANCEEstablishment of a mechanistic synergism between pyranose oxidase and (manganese) peroxidases represents a vital step in the course of elucidating microbial lignin degradation. Here, the comprehensive characterization of a bacterial pyranose 2-oxidase fromKitasatospora aureofaciensis of particular interest for several reasons. First, the phylogenetic analysis of putative pyranose oxidase genes reveals a widespread occurrence of highly similar enzymes in bacteria. Still, there is only a single report on a bacterial pyranose oxidase, stressing the need of closing this gap in the scientific literature. In addition, the relatively smallK. aureofaciensproteome supposedly supplies a limited set of enzymatic functions to realize lignocellulosic biomass degradation. Both enzyme and organism therefore present a viable model to study the mechanisms of bacterial lignin decomposition, elucidate physiologically relevant interactions with specialized peroxidases, and potentially realize biotechnological applications.

Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 446 ◽  
Author(s):  
Karen Ebersohn ◽  
Peter Coetzee ◽  
Louwrens P. Snyman ◽  
Robert Swanepoel ◽  
Estelle H. Venter

The Palyam serogroup orbiviruses are associated with abortion and teratogenesis in cattle and other ruminants. Of the 13 different serotypes that have been identified, the full genome sequence of only one, Kasba, has been published. We undertook to perform Next Generation Sequencing (NGS) and phylogenetic analysis on 12 Palyam serotypes plus field isolates of the African serotypes in our possession. The Palyam serogroup was found to be most closely related to the African horse sickness virus group and showed the most distant evolutionary relationship to the equine encephalosis viruses (EEV). Amino acid sequence analysis revealed that the gene encoding VP7 was the most conserved within serotypes and VP2 and VP5 showed the highest degree of variation. A high degree of sequence identity was found for isolates from the same geographical region. The phylogenetic analysis revealed two clades where the African serotypes were all very closely related in one clade and the other clade contained the Australian and Asian serotypes and one African serotype, Petevo. It was evident from the sequence data that the geographical origin of Palyam serogroup viruses played an important role in the development of the different serotypes.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Stanislav Huszár ◽  
Vinayak Singh ◽  
Alica Polčicová ◽  
Peter Baráth ◽  
María Belén Barrio ◽  
...  

ABSTRACT The mycobacterial phosphoglycosyltransferase WecA, which initiates arabinogalactan biosynthesis in Mycobacterium tuberculosis, has been proposed as a target of the caprazamycin derivative CPZEN-45, a preclinical drug candidate for the treatment of tuberculosis. In this report, we describe the functional characterization of mycobacterial WecA and confirm the essentiality of its encoding gene in M. tuberculosis by demonstrating that the transcriptional silencing of wecA is bactericidal in vitro and in macrophages. Silencing wecA also conferred hypersensitivity of M. tuberculosis to the drug tunicamycin, confirming its target selectivity for WecA in whole cells. Simple radiometric assays performed with mycobacterial membranes and commercially available substrates allowed chemical validation of other putative WecA inhibitors and resolved their selectivity toward WecA versus another attractive cell wall target, translocase I, which catalyzes the first membrane step in the biosynthesis of peptidoglycan. These assays and the mutant strain described herein will be useful for identifying potential antitubercular leads by screening chemical libraries for novel WecA inhibitors.


2015 ◽  
Vol 59 (8) ◽  
pp. 4446-4452 ◽  
Author(s):  
Vadim Makarov ◽  
João Neres ◽  
Ruben C. Hartkoorn ◽  
Olga B. Ryabova ◽  
Elena Kazakova ◽  
...  

ABSTRACT8-Nitro-benzothiazinones (BTZs), such as BTZ043 and PBTZ169, inhibit decaprenylphosphoryl-β-d-ribose 2′-oxidase (DprE1) and display nanomolar bactericidal activity againstMycobacterium tuberculosisin vitro. Structure-activity relationship (SAR) studies revealed the 8-nitro group of the BTZ scaffold to be crucial for the mechanism of action, which involves formation of a semimercaptal bond with Cys387 in the active site of DprE1. To date, substitution of the 8-nitro group has led to extensive loss of antimycobacterial activity. Here, we report the synthesis and characterization of the pyrrole-benzothiazinones PyrBTZ01 and PyrBTZ02, non-nitro-benzothiazinones that retain significant antimycobacterial activity, with MICs of 0.16 μg/ml againstM. tuberculosis. These compounds inhibit DprE1 with 50% inhibitory concentration (IC50) values of <8 μM and present favorablein vitroabsorption-distribution-metabolism-excretion/toxicity (ADME/T) andin vivopharmacokinetic profiles. The most promising compound, PyrBTZ01, did not show efficacy in a mouse model of acute tuberculosis, suggesting that BTZ-mediated killing through DprE1 inhibition requires a combination of both covalent bond formation and compound potency.


2015 ◽  
Vol 82 (1) ◽  
pp. 268-278 ◽  
Author(s):  
Yannick Raoul des Essarts ◽  
Jérémy Cigna ◽  
Angélique Quêtu-Laurent ◽  
Aline Caron ◽  
Euphrasie Munier ◽  
...  

ABSTRACTDevelopment of protection tools targetingDickeyaspecies is an important issue in the potato production. Here, we present the identification and the characterization of novel biocontrol agents. Successive screenings of 10,000 bacterial isolates led us to retain 58 strains that exhibited growth inhibition properties against severalDickeyasp. and/orPectobacteriumsp. pathogens. Most of them belonged to thePseudomonasandBacillusgenera.In vitroassays revealed a fitness decrease of the testedDickeyasp. andPectobacteriumsp. pathogens in the presence of the biocontrol agents. In addition, four independent greenhouse assays performed to evaluate the biocontrol bacteria effect on potato plants artificially contaminated withDickeya dianthicolarevealed that a mix of three biocontrol agents, namely,Pseudomonas putidaPA14H7 andPseudomonas fluorescensPA3G8 and PA4C2, repeatedly decreased the severity of blackleg symptoms as well as the transmission ofD. dianthicolato the tuber progeny. This work highlights the use of a combination of biocontrol strains as a potential strategy to limit the soft rot and blackleg diseases caused byD. dianthicolaon potato plants and tubers.


2006 ◽  
Vol 188 (7) ◽  
pp. 2604-2613 ◽  
Author(s):  
Krisztina Gábor ◽  
Carla S. Veríssimo ◽  
Barbara C. Cyran ◽  
Paul ter Horst ◽  
Nienke P. Meijer ◽  
...  

ABSTRACT The recently identified CprK branch of the CRP (cyclic AMP receptor protein)-FNR (fumarate and nitrate reduction regulator) family of transcriptional regulators includes proteins that activate the transcription of genes encoding proteins involved in reductive dehalogenation of chlorinated aromatic compounds. Here we report the characterization of the CprK1 protein from Desulfitobacterium hafniense, an anaerobic low-G+C gram-positive bacterium that is capable of reductive dechlorination of 3-chloro-4-hydroxyphenylacetic acid (Cl-OHPA). The gene encoding CprK1 was cloned and functionally overexpressed in Escherichia coli, and the protein was subsequently purified to homogeneity. To investigate the interaction of CprK1 with three of its predicted binding sequences (dehaloboxes), we performed in vitro DNA-binding assays (electrophoretic mobility shift assays) as well as in vivo promoter probe assays. Our results show that CprK1 binds its target dehaloboxes with high affinity (dissociation constant, 90 nM) in the presence of Cl-OHPA and that transcriptional initiation by CprK1 is influenced by deviations in the dehaloboxes from the consensus TTAAT----ATTAA sequence. A mutant CprK1 protein was created by a Val→Glu substitution at a conserved position in the recognition α-helix that gained FNR-type DNA-binding specificity, recognizing the TTGAT----ATCAA sequence (FNR box) instead of the dehaloboxes. CprK1 was subject to oxidative inactivation in vitro, most likely caused by the formation of an intermolecular disulfide bridge between Cys11 and Cys200. The possibility of redox regulation of CprK1 by a thiol-disulfide exchange reaction was investigated by using two Cys→Ser mutants. Our results indicate that a Cys11-Cys200 disulfide bridge does not appear to play a physiological role in the regulation of CprK1.


2015 ◽  
Vol 84 (3) ◽  
pp. 701-710 ◽  
Author(s):  
Madeleine G. Moule ◽  
Natasha Spink ◽  
Sam Willcocks ◽  
Jiali Lim ◽  
José Afonso Guerra-Assunção ◽  
...  

Burkholderia pseudomallei, the causative agent of melioidosis, has complex and poorly understood extracellular and intracellular lifestyles. We used transposon-directed insertion site sequencing (TraDIS) to retrospectively analyze a transposon library that had previously been screened through a BALB/c mouse model to identify genes important for growth and survivalin vivo. This allowed us to identify the insertion sites and phenotypes of negatively selected mutants that were previously overlooked due to technical constraints. All 23 unique genes identified in the original screen were confirmed by TraDIS, and an additional 105 mutants with various degrees of attenuationin vivowere identified. Five of the newly identified genes were chosen for further characterization, and clean, unmarkedbpsl2248,tex,rpiR,bpsl1728, andbpss1528deletion mutants were constructed from the wild-type strain K96243. Each of these mutants was testedin vitroandin vivoto confirm their attenuated phenotypes and investigate the nature of the attenuation. Our results confirm that we have identified new genes important toin vivovirulence with roles in different stages ofB. pseudomalleipathogenesis, including extracellular and intracellular survival. Of particular interest, deletion of the transcription accessory protein Tex was shown to be highly attenuating, and thetexmutant was capable of providing protective immunity against challenge with wild-typeB. pseudomallei, suggesting that the genes identified in our TraDIS screen have the potential to be investigated as live vaccine candidates.


2018 ◽  
Vol 115 (25) ◽  
pp. 6428-6433 ◽  
Author(s):  
Iván Ayuso-Fernández ◽  
Francisco J. Ruiz-Dueñas ◽  
Angel T. Martínez

The resurrection of ancestral enzymes of now-extinct organisms (paleogenetics) is a developing field that allows the study of evolutionary hypotheses otherwise impossible to be tested. In the present study, we target fungal peroxidases that play a key role in lignin degradation, an essential process in the carbon cycle and often a limiting step in biobased industries. Ligninolytic peroxidases are secreted by wood-rotting fungi, the origin of which was recently established in the Carboniferous period associated with the appearance of these enzymes. These first peroxidases were not able to degrade lignin directly and used diffusible metal cations to attack its phenolic moiety. The phylogenetic analysis of the peroxidases of Polyporales, the order in which most extant wood-rotting fungi are included, suggests that later in evolution these enzymes would have acquired the ability to degrade nonphenolic lignin using a tryptophanyl radical interacting with the bulky polymer at the surface of the enzyme. Here, we track this powerful strategy for lignin degradation as a phenotypic trait in fungi and show that it is not an isolated event in the evolution of Polyporales. Using ancestral enzyme resurrection, we study the molecular changes that led to the appearance of the same surface oxidation site in two distant peroxidase lineages. By characterization of the resurrected enzymes, we demonstrate convergent evolution at the amino acid level during the evolution of these fungi and track the different changes leading to phylogenetically distant ligninolytic peroxidases from ancestors lacking the ability to degrade nonphenolic lignin.


2018 ◽  
Vol 200 (17) ◽  
Author(s):  
Olga Ramaniuk ◽  
Martin Převorovský ◽  
Jiří Pospíšil ◽  
Dragana Vítovská ◽  
Olga Kofroňová ◽  
...  

ABSTRACTThe σIsigma factor fromBacillus subtilisis a σ factor associated with RNA polymerase (RNAP) that was previously implicated in adaptation of the cell to elevated temperature. Here, we provide a comprehensive characterization of this transcriptional regulator. By transcriptome sequencing (RNA-seq) of wild-type (wt) and σI-null strains at 37°C and 52°C, we identified ∼130 genes affected by the absence of σI. Further analysis revealed that the majority of these genes were affected indirectly by σI. The σIregulon, i.e., the genes directly regulated by σI, consists of 16 genes, of which eight (thedhbandykuoperons) are involved in iron metabolism. The involvement of σIin iron metabolism was confirmed phenotypically. Next, we set up anin vitrotranscription system and defined and experimentally validated the promoter sequence logo that, in addition to −35 and −10 regions, also contains extended −35 and −10 motifs. Thus, σI-dependent promoters are relatively information rich in comparison with most other promoters. In summary, this study supplies information about the least-explored σ factor from the industrially important model organismB. subtilis.IMPORTANCEIn bacteria, σ factors are essential for transcription initiation. Knowledge about their regulons (i.e., genes transcribed from promoters dependent on these σ factors) is the key for understanding how bacteria cope with the changing environment and could be instrumental for biotechnologically motivated rewiring of gene expression. Here, we characterize the σIregulon from the industrially important model Gram-positive bacteriumBacillus subtilis. We reveal that σIaffects expression of ∼130 genes, of which 16 are directly regulated by σI, including genes encoding proteins involved in iron homeostasis. Detailed analysis of promoter elements then identifies unique sequences important for σI-dependent transcription. This study thus provides a comprehensive view on this underexplored component of theB. subtilistranscription machinery.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Gopinath Krishnamoorthy ◽  
Peggy Kaiser ◽  
Laura Lozza ◽  
Karin Hahnke ◽  
Hans-Joachim Mollenkopf ◽  
...  

ABSTRACTMycofactocin (MFT) belongs to the class of ribosomally synthesized and posttranslationally modified peptides conserved in manyActinobacteria.Mycobacterium tuberculosisassimilates cholesterol during chronic infection, and itsin vitrogrowth in the presence of cholesterol requires most of the MFT biosynthesis genes (mftA,mftB,mftC,mftD,mftE, andmftF), although the reasons for this requirement remain unclear. To identify the function of MFT, we characterized MFT biosynthesis mutants constructed inMycobacterium smegmatis,M. marinum, andM. tuberculosis. We found that the growth deficit ofmftdeletion mutants in medium containing cholesterol—a phenotypic basis for gene essentiality prediction—depends on ethanol, a solvent used to solubilize cholesterol. Furthermore, functionality of MFT was strictly required for growth of free-living mycobacteria in ethanol and other primary alcohols. Among other genes encoding predicted MFT-associated dehydrogenases,MSMEG_6242was indispensable forM. smegmatisethanol assimilation, suggesting that it is a candidate catalytic interactor with MFT. Despite being a poor growth substrate, ethanol treatment resulted in a reductive cellular state with NADH accumulation inM. tuberculosis. During ethanol treatment,mftCmutant expressed the transcriptional signatures that are characteristic of respirational dysfunction and a redox-imbalanced cellular state. Counterintuitively, there were no differences in cellular bioenergetics and redox parameters inmftCmutant cells treated with ethanol. Therefore, further understanding of the function of MFT in ethanol metabolism is required to identify the cause of growth retardation of MFT mutants in cholesterol. Nevertheless, our results establish the physiological role of MFT and also provide new insights into the specific functions of MFT homologs in other actinobacterial systems.IMPORTANCETuberculosis is caused byMycobacterium tuberculosis, and the increasing emergence of multidrug-resistant strains renders current treatment options ineffective. Although new antimycobacterial drugs are urgently required, their successful development often relies on complete understanding of the metabolic pathways—e.g., cholesterol assimilation—that are critical for persistence and for pathogenesis ofM. tuberculosis. In this regard, mycofactocin (MFT) function appears to be important because its biosynthesis genes are predicted to be essential forM. tuberculosisin vitrogrowth in cholesterol. In determining the metabolic basis of this genetic requirement, our results unexpectedly revealed the essential function of MFT in ethanol metabolism. The metabolic dysfunction thereof was found to affect the mycobacterial growth in cholesterol which is solubilized by ethanol. This knowledge is fundamental in recognizing the bona fide function of MFT, which likely resembles the pyrroloquinoline quinone-dependent ethanol oxidation in acetic acid bacteria exploited for industrial production of vinegar.


2018 ◽  
Vol 201 (1) ◽  
Author(s):  
Donald Oliver

ABSTRACTCharacterization of Sec-dependent bacterial protein transport has often relied on anin vitroprotein translocation system comprised in part ofEscherichia coliinverted inner membrane vesicles or, more recently, purified SecYEG translocons reconstituted into liposomes using mostly a single substrate (proOmpA). A paper published in this issue (P. Bariya and L. Randall, J Bacteriol 201:e00493-18, 2019, https://doi.org/10.1128/JB.00493-18) finds that inclusion of SecA protein during SecYEG proteoliposome reconstitution dramatically improves the number of active translocons. This experimentally useful and intriguing result that may arise from SecA membrane integration properties is discussed here. Furthermore, determination of the rate-limiting transport step for nine different substrates implicates the mature region distal to the signal peptide in the observed rate constant differences, indicating that more nuanced transport models that respond to differences in protein sequence and structure are needed.


Sign in / Sign up

Export Citation Format

Share Document