scholarly journals Determination of Thermal Inactivation Kinetics of Hepatitis A Virus in Blue Mussel (Mytilus edulis) Homogenate

2014 ◽  
Vol 80 (10) ◽  
pp. 3191-3197 ◽  
Author(s):  
Hayriye Bozkurt ◽  
Doris H. D'Souza ◽  
P. Michael Davidson

ABSTRACTHepatitis A virus (HAV) is a food-borne enteric virus responsible for outbreaks of hepatitis associated with shellfish consumption. The objectives of this study were to determine the thermal inactivation behavior of HAV in blue mussels, to compare the first-order and Weibull models to describe the data, to calculate Arrhenius activation energy for each model, and to evaluate model efficiency by using selected statistical criteria. The times required to reduce the population by 1 log cycle (D-values) calculated from the first-order model (50 to 72°C) ranged from 1.07 to 54.17 min for HAV. Using the Weibull model, the times required to destroy 1 log unit (tD= 1) of HAV at the same temperatures were 1.57 to 37.91 min. At 72°C, the treatment times required to achieve a 6-log reduction were 7.49 min for the first-order model and 8.47 min for the Weibull model. The z-values (changes in temperature required for a 90% change in the log D-values) calculated for HAV were 15.88 ± 3.97°C (R2, 0.94) with the Weibull model and 12.97 ± 0.59°C (R2, 0.93) with the first-order model. The calculated activation energies for the first-order model and the Weibull model were 165 and 153 kJ/mol, respectively. The results revealed that the Weibull model was more appropriate for representing the thermal inactivation behavior of HAV in blue mussels. Correct understanding of the thermal inactivation behavior of HAV could allow precise determination of the thermal process conditions to prevent food-borne viral outbreaks associated with the consumption of contaminated mussels.

2014 ◽  
Vol 77 (2) ◽  
pp. 276-283 ◽  
Author(s):  
HAYRIYE BOZKURT ◽  
DORIS H. D'SOUZA ◽  
P. MICHAEL DAVIDSON

Leafy greens, including spinach, have potential for human norovirus transmission through improper handling and/or contact with contaminated water. Inactivation of norovirus prior to consumption is essential to protect public health. Because of the inability to propagate human noroviruses in vitro, murine norovirus (MNV-1) and feline calicivirus (FCV-F9) have been used as surrogates to model human norovirus behavior under laboratory conditions. The objectives of this study were to determine thermal inactivation kinetics of MNV-1 and FCV-F9 in spinach, compare first-order and Weibull models, and measure the uncertainty associated with the process. D-values were determined for viruses at 50, 56, 60, 65, and 72°C in 2-ml vials. The D-values calculated from the first-order model (50 to 72°C) ranged from 0.16 to 14.57 min for MNV-1 and 0.15 to 17.39 min for FCV-9. Using the Weibull model, the tD for MNV-1 and FCV-F9 to destroy 1 log (D = 1) at the same temperatures ranged from 0.22 to 15.26 and 0.27 to 20.71 min, respectively. The z-values determined for MNV-1 were 11.66 ± 0.42°C using the Weibull model and 10.98 ± 0.58°C for the first-order model and for FCV-F9 were 10.85 ± 0.67°C and 9.89 ± 0.79°C, respectively. There was no difference in D- or z-value using the two models (P >0.05). Relative uncertainty for dilution factor, personal counting, and test volume were 0.005, 0.0004, and ca. 0.84%, respectively. The major contribution to total uncertainty was from the model selected. Total uncertainties for FCV-F9 for the Weibull and first-order models were 3.53 to 7.56% and 11.99 to 21.01%, respectively, and for MNV-1, 3.10 to 7.01% and 13.14 to 16.94%, respectively. Novel and precise information on thermal inactivation of human norovirus surrogates in spinach was generated, enabling more reliable thermal process calculations to control noroviruses. The results of this study may be useful to the frozen food industry in designing blanching processes for spinach to inactivate or control noroviruses.


2016 ◽  
Vol 79 (9) ◽  
pp. 1482-1489
Author(s):  
HAYRIYE BOZKURT ◽  
JAIRUS R. D. DAVID ◽  
RYAN J. TALLEY ◽  
D. SCOTT LINEBACK ◽  
P. MICHAEL DAVIDSON

ABSTRACT Sporolactobacillus species have been occasionally isolated from spoiled foods and environmental sources. Thus, food processors should be aware of their potential presence and characteristics. In this study, the heat resistance and influence of the growth and recovery media on apparent heat resistance of Sporolactobacillus nakayamae spores were studied and described mathematically. For each medium, survivor curves and thermal death curves were generated for different treatment times (0 to 25 min) at different temperatures (70, 75, and 80°C) and Weibull and first-order models were compared. Thermal inactivation data for S. nakayamae spores varied widely depending on the media formulations used, with glucose yeast peptone consistently yielding the highest D-values for the three temperatures tested. For this same medium, the D-values ranged from 25.24 ± 1.57 to 3.45 ± 0.27 min for the first-order model and from 24.18 ± 0.62 to 3.50 ± 0.24 min for the Weibull model at 70 and 80°C, respectively. The z-values determined for S. nakayamae spores were 11.91 ± 0.29°C for the Weibull model and 11.58 ± 0.43°C for the first-order model. The calculated activation energy was 200.5 ± 7.3 kJ/mol for the first-order model and 192.8 ± 22.1 kJ/mol for the Weibull model. The Weibull model consistently produced the best fit for all the survival curves. This study provides novel and precise information on thermal inactivation kinetics of S. nakayamae spores that will enable reliable thermal process calculations for eliminating this spoilage bacterium.


2015 ◽  
Vol 81 (14) ◽  
pp. 4850-4859 ◽  
Author(s):  
Hayriye Bozkurt ◽  
Doris H. D'Souza ◽  
P. Michael Davidson

ABSTRACTHuman noroviruses (HNoV) and hepatitis A virus (HAV) have been implicated in outbreaks linked to the consumption of presliced ready-to-eat deli meats. The objectives of this research were to determine the thermal inactivation kinetics of HNoV surrogates (murine norovirus 1 [MNV-1] and feline calicivirus strain F9 [FCV-F9]) and HAV in turkey deli meat, compare first-order and Weibull models to describe the data, and calculate Arrhenius activation energy values for each model. TheD(decimal reduction time) values in the temperature range of 50 to 72°C calculated from the first-order model were 0.1 ± 0.0 to 9.9 ± 3.9 min for FCV-F9, 0.2 ± 0.0 to 21.0 ± 0.8 min for MNV-1, and 1.0 ± 0.1 to 42.0 ± 5.6 min for HAV. Using the Weibull model, thetD = 1(time to destroy 1 log) values for FCV-F9, MNV-1, and HAV at the same temperatures ranged from 0.1 ± 0.0 to 11.9 ± 5.1 min, from 0.3 ± 0.1 to 17.8 ± 1.8 min, and from 0.6 ± 0.3 to 25.9 ± 3.7 min, respectively. Thez(thermal resistance) values for FCV-F9, MNV-1, and HAV were 11.3 ± 2.1°C, 11.0 ± 1.6°C, and 13.4 ± 2.6°C, respectively, using the Weibull model. Thezvalues using the first-order model were 11.9 ± 1.0°C, 10.9 ± 1.3°C, and 12.8 ± 1.7°C for FCV-F9, MNV-1, and HAV, respectively. For the Weibull model, estimated activation energies for FCV-F9, MNV-1, and HAV were 214 ± 28, 242 ± 36, and 154 ± 19 kJ/mole, respectively, while the calculated activation energies for the first-order model were 181 ± 16, 196 ± 5, and 167 ± 9 kJ/mole, respectively. Precise information on the thermal inactivation of HNoV surrogates and HAV in turkey deli meat was generated. This provided calculations of parameters for more-reliable thermal processes to inactivate viruses in contaminated presliced ready-to-eat deli meats and thus to reduce the risk of foodborne illness outbreaks.


2013 ◽  
Vol 76 (1) ◽  
pp. 79-84 ◽  
Author(s):  
HAYRIYE BOZKURT ◽  
DORIS H. D'SOUZA ◽  
P. MICHAEL DAVIDSON

Studies are needed to bridge existing data gaps and determine appropriate parameters for thermal inactivation methods for human noroviruses. Cultivable surrogates, such as feline calicivirus (FCV-F9) and murine norovirus (MNV-1), have been used in the absence of human norovirus infectivity assays. This study aimed to characterize the thermal inactivation kinetics of MNV-1 and FCV-F9 at 50, 56, 60, 65, and 72°C for different treatment times (0 to 60 min). Thermal inactivation was performed using the capillary tube method with titers of 4.0 × 107 (MNV-1) and 5.8 × 108 (FCV-F9) PFU/ml in triplicate experiments, followed by standard plaque assays in duplicate for each experiment. Weibull and first-order models were compared to describe survival curve kinetics. Model fitness was investigated by comparing the regression coefficients (R2) and the chi-square (χ2) and root mean square error (RMSE) values. The D-values calculated from the first-order model (50 to 72°C) were 0.15 to 34.49 min for MNV-1 and 0.11 to 20.23 min for FCV-9. Using the Weibull model, the tD values needed to destroy 1 log PFU of MNV-1 and FCV-F9 at the same temperatures were 0.11 to 28.26 and 0.06 to 13.86 min, respectively. In terms of thermal resistance, MNV-1 was more sensitive than FCV-F9 up to 65°C. At 72°C, FCV-F9 was slightly more susceptible to heat inactivation. Results revealed that the Weibull model was more appropriate to represent the thermal inactivation behavior of both tested surrogates. The z-values were calculated using D-values for the first-order model and the tD values for the Weibull model. The z-values were 9.31 and 9.19°C for MNV-1 and 9.36 and 9.31°C for FCV-F9 for the first-order and Weibull models, respectively. This study provides more precise information than previous reports on the thermal inactivation kinetics of two norovirus surrogates for use in thermal process calculations.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1272
Author(s):  
Yuanmei Xu ◽  
Xiangyu Guan ◽  
Biying Lin ◽  
Rui Li ◽  
Shaojin Wang

Tahini and tahini-based products are popular with consumers due to their special flavor and high nutritional values, but often have been linked to Salmonella outbreaks. The objective of this study was to compare effects of different kinds of natural antimicrobials on Salmonella inactivation in undiluted and diluted tahini during thermal treatment and storage. Results showed that the Weibull model was more suitable to describe the thermal inactivation behavior of S. montevideo CICC21588 in two kinds of tahini than the first-order model. Inactivation curves were concave-upward in undiluted tahini but concave-downward in diluted tahini. During storage of undiluted tahini, 3% oregano oil caused extra 1.44 or 0.80 log CFU/g reductions after 7 days at 25 °C or 4 °C compared to the control and 0.5% citric acid caused an extra reduction of 0.75 log CFU/g after 7 d at 4 °C. For diluted tahini, 2–3% oregano oil and 0.4–0.5% ε-polylysine reduced more populations compared to undiluted tahini. These antimicrobials all inhibited the growth of S. montevideo during 24 h at 25 °C and ε-polylysine had the best effect. Furthermore, these antimicrobials enhanced the Salmonella inactivation in diluted tahini during thermal treatment, and there was less of a synergistic effect of thermal and antimicrobials in undiluted tahini due to less sublethal injured cells caused by heat. This study may provide useful information for Salmonella inactivation in tahini.


2003 ◽  
Vol 69 (1) ◽  
pp. 350-357 ◽  
Author(s):  
Suphachai Nuanualsuwan ◽  
Dean O. Cliver

ABSTRACT The exceptional stability of enteric viruses probably resides in their capsids. The capsid functions of inactivated human picornaviruses and feline calicivirus (FCV) were determined. Viruses were inactivated by UV, hypochlorite, high temperature (72°C), and physiological temperature (37°C), all of which are pertinent to transmission via food and water. Poliovirus (PV) and hepatitis A virus (HAV) are transmissible via water and food, and FCV is the best available surrogate for the Norwalk-like viruses, which are leading causes of food-borne and waterborne disease in the United States. The capsids of all 37°C-inactivated viruses still protected the viral RNA against RNase, even in the presence of proteinase K, which contrasted with findings with viruses inactivated at 72°C. The loss of ability of the virus to attach to homologous cell receptors was universal, regardless of virus type and inactivation method, except for UV-inactivated HAV, and so virus inactivation was almost always accompanied by the loss of virus attachment. Inactivated HAV and FCV were captured by homologous antibodies. However, inactivated PV type 1 (PV-1) was not captured by homologous antibody and 37°C-inactivated PV-1 was only partially captured. The epitopes on the capsids of HAV and FCV are evidently discrete from the receptor attachment sites, unlike those of PV-1. These findings indicate that the primary target of UV, hypochlorite, and 72°C inactivation is the capsid and that the target of thermal inactivation (37°C versus 72°C) is temperature dependent.


2000 ◽  
Vol 83 (1) ◽  
pp. 178-182 ◽  
Author(s):  
Urania Menkissoglu-Spiroudi ◽  
Grigorios C Diamantidis ◽  
Vassiliki E Georgiou ◽  
Andreas T Thrasyvoulou

Abstract A rapid, reliable, and inexpensive extraction method was developed to determine acaricide residues in honey by gas chromatography (GC) with nitrogen–phosphorus (NP) or electron capture (EC) detectors. Because of the high selectivity of the NP detector, no interfering peaks were present and no cleanup was necessary. A simple cleanup step is proposed for the GC–ECD analysis. Recoveries from spiked honey samples ranged from 79 to 94.4%, with coefficients of variation of 0.3–18.5%. The quantitation limit obtained was 0.015 mg/kg for malathion, 0.020 mg/kg for coumaphos, and 0.005 mg/kg for fluvalinate. The method was used to determine the disappearance of malathion and coumaphos residues from honey samples collected from beehives treated with these acaricides. The disappearance of both acaricides was rapid and followed a first-order model for the duration of the experiment.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Hector Hugo Ortega Soto ◽  
Jorge Javier Ramírez García ◽  
Paula Gamboa Suárez ◽  
Angie Michelle Dávila Estrada

In this work, two specific, sensitive, and rapid analytical methods were developed. One of them was for the determination of ketorolac in a hospital wastewater treatment plant where there is no interference with other organic substances; the other one was for the determination of the degradation kinetics in aqueous medium. Ketorolac was extracted from wastewater samples through solid-phase extraction (SPE) cartridges, then it was identified and quantified by high-performance liquid chromatography (HPLC). Ketorolac was detected in concentrations between 0.1376 and 0.2667 μg/L. Photolytic degradation was performed on aqueous solutions of ketorolac tromethamine reference substance, at a concentration of 50 μg/mL. Samples were in direct contact with ultraviolet light in a dark chamber, equipped with two mercury lamps (254 nm) at a radiation source of 15 W. The results of the photolytic degradation were adjusted to a first-order model, obtaining a half-life of 4.8 hrs.


1998 ◽  
Vol 61 (3) ◽  
pp. 285-289 ◽  
Author(s):  
M. ROCELLE S. CLAVERO ◽  
LARRY R. BEUCHAT ◽  
MICHAEL P. DOYLE

Rates of thermal inactivation of five strains of Escherichia coli O157:H7 isolated from ground beef implicated in outbreaks of hemorrhagic colitis and five strains isolated from bovine feces were determined. Ground beef (22% fat, 10 g), inoculated with individual test strains at populations ranging from 6.85 to 7.40 log10 CFU g−1 of beef, was formed into patties (0.3 cm thick and 8.0 cm in diameter) and sealed in polyethylene bags. For each strain and treatment temperature (54.4, 58.9, 62.8, 65.6, or 68.3°C), 6 bags were simultaneously immersed into a recirculating water bath. Viable cells in patties heated for various lengths of time were enumerated by plating diluted samples on sorbitol MacConkey agar supplemented with 4-methylumbelliferyl-β-d-glucuronide (MSMA) and modified eosin methylene blue (MEMB) agar. Regardless of strain or treatment temperature, higher numbers of E. coli O157:H7 cells were generally recovered on MEMB agar than on MSMA, indicating the inferiority of MSMA as a recovery medium for quantitative determination of E. coli O157:H7 cells in heat-processed ground beef. Significantly (P ≤ 0.05) higher D values when enumeration was done using MEMB agar compared with MSMA. Mean D values for combined strain data at 54.4, 58.9, 62.8, and 65.6°C from cultures on MEMB agar were 123.90, 6.47, 0.62, and 0.20 min, respectively, whereas D values of 25.5, 5.21, 0.57, and 0.18 min were obtained at the same temperatures from cultures on MSMA. Results suggest that cooking ground beef patties to an internal temperature of 68.3°C for 40 s will inactivate at least 99.99% of E. coli O157:H7 cells; z values of 4.0 and 5.1°C were calculated from mean D values obtained from MEMB agar and MSMA, respectively, as recovery media. Differences in D values and z values existed among strains but rates of thermal inactivation do not appear to be correlated with the sources of the isolates.


Sign in / Sign up

Export Citation Format

Share Document