scholarly journals Microbial Communities of Orange Tubercles in Accelerated Low-Water Corrosion

2020 ◽  
Vol 86 (13) ◽  
Author(s):  
Hoang C. Phan ◽  
Scott A. Wade ◽  
Linda L. Blackall

ABSTRACT The rapid degradation of marine infrastructure at the low tide level due to accelerated low-water corrosion (ALWC) is a problem encountered worldwide. Despite this, there is limited understanding of the microbial communities involved in this process. We obtained samples of the orange-colored tubercles commonly associated with ALWC from two different types of steel sheet piling, located adjacent to each other but with different levels of localized corrosion, at a seaside harbor. The microbial communities from the outer and inner layers of the orange tubercles and from adjacent seawater were studied by pure culture isolation and metabarcoding of the 16S rRNA genes. A collection of 119 bacterial isolates was obtained from one orange tubercle sample, using a range of media in anaerobic and aerobic conditions. The metabarcoding results showed that sulfur and iron oxidizers were more abundant on the outer sections of the orange tubercles compared to the inner layers, where Deltaproteobacteria (which include many sulfate reducers) were more abundant. The microbial communities varied significantly between the inner and outer layers of the orange tubercles and also with the seawater but overall did not differ significantly between the two steel sheet types. Hence, we saw similar microbial communities in orange tubercles present, but different levels of localized corrosion, for two different types of colocated steel sheet piling. Metallurgical analysis found differences in composition, grain size, ferrite-pearlite ratio, and the extent of inclusions present between the two steel types investigated. IMPORTANCE The presence of orange tubercles on marine steel pilings is often used as an indication that accelerated low-water corrosion is taking place. We studied the microbial communities in attached orange tubercles on two closely located sheet pilings that were of different steel types. The attached orange tubercles were visually similar, but the extents of underlying corrosion on the different steel surfaces were substantially different. No clear difference was found between the microbial communities present on the two different types of sheet piling. However, there were clear differences in the microbial communities in the corrosion layers of tubercles, which were also different from the microbes present in adjacent seawater. The overall results suggest that the presence of orange tubercles, a single measurement of water quality, or the detection of certain general types of microbes (e.g., sulfate-reducing bacteria) should not be taken alone as definitive indications of accelerated corrosion.

2019 ◽  
Author(s):  
Hoang C. Phan ◽  
Scott A. Wade ◽  
Linda L. Blackall

ABSTRACTThe rapid degradation of marine infrastructure at the low tide level due to accelerated low water corrosion (ALWC) is a problem encountered worldwide. Despite this, there is limited understanding of the microbial communities involved in this process. We obtained samples of the orange-coloured tubercles commonly associated with ALWC from two different types of steel sheet piling, located adjacent to each other but with different levels of localised corrosion, at a seaside harbour. The microbial communities from the outer and inner layers of the orange tubercles, and from adjacent seawater, were studied by pure culture isolation and metabarcoding of the 16S rRNA genes. A collection of 119 bacterial isolates was obtained from one orange tubercle sample, using a range of media with anaerobic and aerobic conditions. The metabarcoding results showed that sulfur and iron oxidisers were more abundant on the outer section of the orange tubercles compared to the inner layers, where Deltaproteobacteria (which includes many sulfate reducers) were more abundant. The microbial communities varied significantly between the inner and outer layers of the orange tubercles and also with the seawater, but overall did not differ significantly between the two steel sheet types. Metallurgical analysis found differences in composition, grain size, ferrite-pearlite ratio and the extent of inclusions present between the two steel types investigated.IMPORTANCEThe presence of orange tubercles on marine steel pilings is often used as an indication that accelerated low water corrosion is taking place. We studied the microbial communities in attached orange tubercles on two closely located sheet pilings that were of different steel types. The attached orange tubercles were visually similar, but the extent of underlying corrosion on the different steel surfaces were substantially different. No clear difference was found between the microbial communities present on the two different types of sheet piling. However, there were clear differences in the microbial communities in the corrosion layers of tubercles, which were also different to the microbes present in adjacent seawater. The overall results suggest that the presence of orange tubercles, a single measurement of water quality, or the detection of certain general types of microbes (e.g. sulfate reducing bacteria) should not be taken alone as definitive indications of accelerated corrosion.


2017 ◽  
Vol 83 (16) ◽  
Author(s):  
Daniel S. Jones ◽  
Kim A. Lapakko ◽  
Zachary J. Wenz ◽  
Michael C. Olson ◽  
Elizabeth W. Roepke ◽  
...  

ABSTRACT The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula, as well as from diverse clades of uncultivated Chloroflexi, Acidobacteria, and Betaproteobacteria. Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits.


2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Ryan A. Blaustein ◽  
Graciela L. Lorca ◽  
Julie L. Meyer ◽  
Claudio F. Gonzalez ◽  
Max Teplitski

ABSTRACTStable associations between plants and microbes are critical to promoting host health and productivity. The objective of this work was to test the hypothesis that restructuring of the core microbiota may be associated with the progression of huanglongbing (HLB), the devastating citrus disease caused byLiberibacter asiaticus,Liberibacter americanus, andLiberibacter africanus. The microbial communities of leaves (n= 94) and roots (n= 79) from citrus trees that varied by HLB symptom severity, cultivar, location, and season/time were characterized with Illumina sequencing of 16S rRNA genes. The taxonomically rich communities contained abundant core members (i.e., detected in at least 95% of the respective leaf or root samples), some overrepresented site-specific members, and a diverse community of low-abundance variable taxa. The composition and diversity of the leaf and root microbiota were strongly associated with HLB symptom severity and location; there was also an association with host cultivar. The relative abundance ofLiberibacterspp. among leaf microbiota positively correlated with HLB symptom severity and negatively correlated with alpha diversity, suggesting that community diversity decreases as symptoms progress. Network analysis of the microbial community time series identified a mutually exclusive relationship betweenLiberibacterspp. and members of theBurkholderiaceae,Micromonosporaceae, andXanthomonadaceae. This work confirmed several previously described plant disease-associated bacteria, as well as identified new potential implications for biological control. Our findings advance the understanding of (i) plant microbiota selection across multiple variables and (ii) changes in (core) community structure that may be a precondition to disease establishment and/or may be associated with symptom progression.IMPORTANCEThis study provides a comprehensive overview of the core microbial community within the microbiomes of plant hosts that vary in extent of disease symptom progression. With 16S Illumina sequencing analyses, we not only confirmed previously described bacterial associations with plant health (e.g., potentially beneficial bacteria) but also identified new associations and potential interactions between certain bacteria and an economically important phytopathogen. The importance of core taxa within broader plant-associated microbial communities is discussed.


2019 ◽  
Author(s):  
Caitlin Petro ◽  
Birthe Zäncker ◽  
Piotr Starnawski ◽  
Lara M. Jochum ◽  
Timothy G. Ferdelman ◽  
...  

AbstractAnalyses of microbial diversity in marine sediments have identified a core set of taxa unique to the marine deep biosphere. Previous studies have suggested that these specialized communities are shaped by processes in the surface seabed, in particular that their assembly is associated with the transition from the bioturbated upper zone to the nonbioturbated zone below. To test this hypothesis, we performed a fine-scale analysis of the distribution and activity of microbial populations within the upper 50 cm of sediment from Aarhus Bay (Denmark). Sequencing and qPCR were combined to determine the depth distributions of bacterial and archaeal taxa (16S rRNA genes) and sulfate-reducing microorganisms (dsrBgene). Mapping of radionuclides throughout the sediment revealed a region of intense bioturbation at 0-6 cm depth. The transition from bioturbated sediment to the subsurface below (7 cm depth) was marked by a shift from dominant surface populations to common deep biosphere taxa (e.g. Chloroflexi & Atribacteria). Changes in community composition occurred in parallel to drops in microbial activity and abundance caused by reduced energy availability below the mixed sediment surface. These results offer direct evidence for the hypothesis that deep subsurface microbial communities present in Aarhus Bay mainly assemble already centimeters below the sediment surface, below the bioturbation zone.


2015 ◽  
Vol 81 (13) ◽  
pp. 4246-4252 ◽  
Author(s):  
Yan Yan ◽  
Eiko E. Kuramae ◽  
Peter G. L. Klinkhamer ◽  
Johannes A. van Veen

ABSTRACTIt is hard to assess experimentally the importance of microbial diversity in soil for the functioning of terrestrial ecosystems. An approach that is often used to make such assessment is the so-called dilution method. This method is based on the assumption that the biodiversity of the microbial community is reduced after dilution of a soil suspension and that the reduced diversity persists after incubation of more or less diluted inocula in soil. However, little is known about how the communities develop in soil after inoculation. In this study, serial dilutions of a soil suspension were made and reinoculated into the original soil previously sterilized by gamma irradiation. We determined the structure of the microbial communities in the suspensions and in the inoculated soils using 454-pyrosequencing of 16S rRNA genes. Upon dilution, several diversity indices showed that, indeed, the diversity of the bacterial communities in the suspensions decreased dramatically, withProteobacteriaas the dominant phylum of bacteria detected in all dilutions. The structure of the microbial community was changed considerably in soil, withProteobacteria,Bacteroidetes, andVerrucomicrobiaas the dominant groups in most diluted samples, indicating the importance of soil-related mechanisms operating in the assembly of the communities. We found unique operational taxonomic units (OTUs) even in the highest dilution in both the suspensions and the incubated soil samples. We conclude that the dilution approach reduces the diversity of microbial communities in soil samples but that it does not allow accurate predictions of the community assemblage during incubation of (diluted) suspensions in soil.


2012 ◽  
Vol 78 (17) ◽  
pp. 5983-5993 ◽  
Author(s):  
Hyo Jung Lee ◽  
Ji Young Jung ◽  
Young Kyoon Oh ◽  
Sang-Suk Lee ◽  
Eugene L. Madsen ◽  
...  

ABSTRACTPyrosequencing of 16S rRNA genes (targetingBacteriaandArchaea) and1H nuclear magnetic resonance were applied to investigate the rumen microbiota and metabolites of Hanwoo steers in the growth stage (HGS), Hanwoo steers in the late fattening stage (HFS), Holstein-Friesian dairy cattle (HDC), and Korean native goats (KNG) in the late fattening stage. This was a two-part investigation. We began by comparing metabolites and microbiota of Hanwoo steers at two stages of husbandry. Statistical comparisons of metabolites and microbial communities showed no significant differences between HFS and HGS (differing by a dietary shift at 24 months and age [67 months versus 12 months]). We then augmented the study by extending the investigation to HDC and KNG. Overall, pyrosequencing of 16S rRNA genes showed that the rumens had highly diverse microbial communities containing many previously undescribed microorganisms. Bioinformatic analysis revealed that the bacterial sequences were predominantly affiliated with four phyla—Bacteroidetes,Firmicutes,Fibrobacteres, andProteobacteria—in all ruminants. However, interestingly, the bacterial reads belonging toFibrobactereswere present at a very low abundance (<0.1%) in KNG. Archaeal community analysis showed that almost all of these reads fell into a clade related to, but distinct from, known cultivated methanogens. Statistical analyses showed that the microbial communities and metabolites of KNG were clearly distinct from those of other ruminants. In addition, bacterial communities and metabolite profiles of HGS and HDC, fed similar diets, were distinctive. Our data indicate that bovine host breeds override diet as the key factor that determines bacterial community and metabolite profiles in the rumen.


2011 ◽  
Vol 77 (19) ◽  
pp. 6908-6917 ◽  
Author(s):  
Hyung Soo Park ◽  
Indranil Chatterjee ◽  
Xiaoli Dong ◽  
Sheng-Hung Wang ◽  
Christoph W. Sensen ◽  
...  

ABSTRACTPipelines transporting brackish subsurface water, used in the production of bitumen by steam-assisted gravity drainage, are subject to frequent corrosion failures despite the addition of the oxygen scavenger sodium bisulfite (SBS). Pyrosequencing of 16S rRNA genes was used to determine the microbial community composition for planktonic samples of transported water and for sessile samples of pipe-associated solids (PAS) scraped from pipeline cutouts representing corrosion failures. These were obtained from upstream (PAS-616P) and downstream (PAS-821TP and PAS-821LP, collected under rapid-flow and stagnant conditions, respectively) of the SBS injection point. Most transported water samples had a large fraction (1.8% to 97% of pyrosequencing reads) ofPseudomonasnot found in sessile pipe samples. The sessile population of PAS-616P had methanogens (Methanobacteriaceae) as the main (56%) community component, whereasDeltaproteobacteriaof the generaDesulfomicrobiumandDesulfocapsawere not detected. In contrast, PAS-821TP and PAS-821LP had lower fractions (41% and 0.6%) ofMethanobacteriaceaearchaea but increased fractions of sulfate-reducingDesulfomicrobium(18% and 48%) and of bisulfite-disproportionatingDesulfocapsa(35% and 22%) bacteria. Hence, SBS injection strongly changed the sessile microbial community populations. X-ray diffraction analysis of pipeline scale indicated that iron carbonate was present both upstream and downstream, whereas iron sulfide and sulfur were found only downstream of the SBS injection point, suggesting a contribution of the bisulfite-disproportionating and sulfate-reducing bacteria in the scale to iron corrosion. Incubation of iron coupons with pipeline waters indicated iron corrosion coupled to the formation of methane. Hence, both methanogenic and sulfidogenic microbial communities contributed to corrosion of pipelines transporting these brackish waters.


2017 ◽  
Vol 83 (21) ◽  
Author(s):  
Cecilia M. Chiriac ◽  
Edina Szekeres ◽  
Knut Rudi ◽  
Andreea Baricz ◽  
Adriana Hegedus ◽  
...  

ABSTRACT This report describes the biodiversity and ecology of microbial mats developed in thermal gradients (20 to 65°C) in the surroundings of three drillings (Chiraleu [CH], Ciocaia [CI], and Mihai Bravu [MB]) tapping a hyperthermal aquifer in Romania. Using a metabarcoding approach, 16S rRNA genes were sequenced from both DNA and RNA transcripts (cDNA) and compared. The relationships between the microbial diversity and the physicochemical factors were explored. Additionally, the cDNA data were used for in silico functionality predictions, bringing new insights into the functional potential and dynamics of these communities. The results showed that each hot spring determined the formation of distinct microbial communities. In the CH mats (40 to 53°C), the abundance of Cyanobacteria decreased with temperature, opposite to those of Chloroflexi and Proteobacteria. Ectothiorhodospira, Oscillatoria, and methanogenic archaea dominated the CI communities (20 to 65°C), while the MB microbial mats (53 to 65°C) were mainly composed of Chloroflexi, Hydrogenophilus, Thermi, and Aquificae. Alpha-diversity was negatively correlated with the increase in water temperature, while beta-diversity was shaped in each hot spring by the unique combination of physicochemical parameters, regardless of the type of nucleic acid analyzed (DNA versus cDNA). The rank correlation analysis revealed a unique model that associated environmental data with community composition, consisting in the combined effect of Na+, K+, HCO3 −, and PO4 3− concentrations, together with temperature and electrical conductivity. These factors seem to determine the grouping of samples according to location, rather than with the similarities in thermal regimes, showing that other parameters beside temperature are significant drivers of biodiversity. IMPORTANCE Hot spring microbial mats represent a remarkable manifestation of life on Earth and have been intensively studied for decades. Moreover, as hot spring areas are isolated and have a limited exchange of organisms, nutrients, and energy with the surrounding environments, hot spring microbial communities can be used in model studies to elucidate the colonizing potential within extreme settings. Thus, they are of great importance in evolutionary biology, microbial ecology, and exobiology. In spite of all the efforts that have been made, the current understanding of the influence of temperature and water chemistry on the microbial community composition, diversity, and abundance in microbial mats is limited. In this study, the composition and diversity of microbial communities developed in thermal gradients in the vicinity of three hot springs from Romania were investigated, each having particular physicochemical characteristics. Our results expose new factors that could determine the formation of these ecosystems, expanding the current knowledge in this regard.


2021 ◽  
Vol 9 (10) ◽  
pp. 2072
Author(s):  
Evgenii N. Frolov ◽  
Alexandra V. Gololobova ◽  
Alexandra A. Klyukina ◽  
Elizaveta A. Bonch-Osmolovskaya ◽  
Nikolay V. Pimenov ◽  
...  

Microbial communities of the Kamchatka Peninsula terrestrial hot springs were studied using radioisotopic and cultural approaches, as well as by the amplification and sequencing of dsrB and 16S rRNA genes fragments. Radioisotopic experiments with 35S-labeled sulfate showed that microbial communities of the Kamchatka hot springs are actively reducing sulfate. Both the cultivation experiments and the results of dsrB and 16S rRNA genes fragments analyses indicated the presence of microorganisms participating in the reductive part of the sulfur cycle. It was found that sulfate-reducing prokaryotes (SRP) belonging to Desulfobacterota, Nitrospirota and Firmicutes phyla inhabited neutral and slightly acidic hot springs, while bacteria of phylum Thermodesulofobiota preferred moderately acidic hot springs. In high-temperature acidic springs sulfate reduction was mediated by archaea of the phylum Crenarchaeota, chemoorganoheterotrophic representatives of genus Vulcanisaeta being the most probable candidates. The 16S rRNA taxonomic profiling showed that in most of the studied communities SRP was present only as a minor component. Only in one microbial community, the representatives of genus Vulcanisaeta comprised a significant group. Thus, in spite of comparatively low sulfate concentrations in terrestrial hot springs of the Kamchatka, phylogenetically and metabolically diverse groups of sulfate-reducing prokaryotes are operating there coupling carbon and sulfur cycles in these habitats.


Sign in / Sign up

Export Citation Format

Share Document