scholarly journals CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces

2018 ◽  
Vol 84 (18) ◽  
Author(s):  
Lei Li ◽  
Keke Wei ◽  
Guosong Zheng ◽  
Xiaocao Liu ◽  
Shaoxin Chen ◽  
...  

ABSTRACT Streptomyces has a strong capability for producing a large number of bioactive natural products and remains invaluable as a source for the discovery of novel drug leads. Although the Streptococcus pyogenes CRISPR-Cas9-assisted genome editing tool has been developed for rapid genetic engineering in Streptomyces, it has a number of limitations, including the toxicity of SpCas9 expression in some important industrial Streptomyces strains and the need for complex expression constructs when targeting multiple genomic loci. To address these problems, in this study, we developed a high-efficiency CRISPR-Cpf1 system (from Francisella novicida) for multiplex genome editing and transcriptional repression in Streptomyces. Using an all-in-one editing plasmid with homology-directed repair (HDR), our CRISPR-Cpf1 system precisely deletes single or double genes at efficiencies of 75 to 95% in Streptomyces coelicolor. When no templates for HDR are present, random-sized DNA deletions are achieved by FnCpf1-induced double-strand break (DSB) repair by a reconstituted nonhomologous end joining (NHEJ) pathway. Furthermore, a DNase-deactivated Cpf1 (ddCpf1)-based integrative CRISPRi system is developed for robust, multiplex gene repression using a single customized crRNA array. Finally, we demonstrate that FnCpf1 and SpCas9 exhibit different suitability in tested industrial Streptomyces species and show that FnCpf1 can efficiently promote HDR-mediated gene deletion in the 5-oxomilbemycin-producing strain Streptomyces hygroscopicus SIPI-KF, in which SpCas9 does not work well. Collectively, FnCpf1 is a powerful and indispensable addition to the Streptomyces CRISPR toolbox. IMPORTANCE Rapid, efficient genetic engineering of Streptomyces strains is critical for genome mining of novel natural products (NPs) as well as strain improvement. Here, a novel and high-efficiency Streptomyces genome editing tool is established based on the FnCRISPR-Cpf1 system, which is an attractive and powerful alternative to the S. pyogenes CRISPR-Cas9 system due to its unique features. When combined with HDR or NHEJ, FnCpf1 enables the creation of gene(s) deletion with high efficiency. Furthermore, a ddCpf1-based integrative CRISPRi platform is established for simple, multiplex transcriptional repression. Of importance, FnCpf1-based genome editing proves to be a highly efficient tool for genetic modification of some important industrial Streptomyces strains (e.g., S. hygroscopicus SIPI-KF) that cannot utilize the SpCRISPR-Cas9 system. We expect the CRISPR-Cpf1-assisted genome editing tool to accelerate discovery and development of pharmaceutically active NPs in Streptomyces as well as other actinomycetes.

2016 ◽  
Vol 82 (20) ◽  
pp. 6109-6119 ◽  
Author(s):  
Mark R. Bruder ◽  
Michael E. Pyne ◽  
Murray Moo-Young ◽  
Duane A. Chung ◽  
C. Perry Chou

ABSTRACTThe discovery and exploitation of the prokaryotic adaptive immunity system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins have revolutionized genetic engineering. CRISPR-Cas tools have enabled extensive genome editing as well as efficient modulation of the transcriptional program in a multitude of organisms. Progress in the development of genetic engineering tools for the genusClostridiumhas lagged behind that of many other prokaryotes, presenting the CRISPR-Cas technology an opportunity to resolve a long-existing issue. Here, we applied theStreptococcus pyogenestype II CRISPR-Cas9 (SpCRISPR-Cas9) system for genome editing inClostridium acetobutylicumDSM792. We further explored the utility of the SpCRISPR-Cas9 machinery for gene-specific transcriptional repression. For proof-of-concept demonstration, a plasmid-encoded fluorescent protein gene was used for transcriptional repression inC. acetobutylicum. Subsequently, we targeted the carbon catabolite repression (CCR) system ofC. acetobutylicumthrough transcriptional repression of thehprKgene encoding HPr kinase/phosphorylase, leading to the coutilization of glucose and xylose, which are two abundant carbon sources from lignocellulosic feedstocks. Similar approaches based on SpCRISPR-Cas9 for genome editing and transcriptional repression were also demonstrated inClostridium pasteurianumATCC 6013. As such, this work lays a foundation for the derivation of clostridial strains for industrial purposes.IMPORTANCEAfter recognizing the industrial potential ofClostridiumfor decades, methods for the genetic manipulation of these anaerobic bacteria are still underdeveloped. This study reports the implementation of CRISPR-Cas technology for genome editing and transcriptional regulation inClostridium acetobutylicum, which is arguably the most common industrial clostridial strain. The developed genetic tools enable simpler, more reliable, and more extensive derivation ofC. acetobutylicummutant strains for industrial purposes. Similar approaches were also demonstrated inClostridium pasteurianum, another clostridial strain that is capable of utilizing glycerol as the carbon source for butanol fermentation, and therefore can be arguably applied in other clostridial strains.


2018 ◽  
Vol 84 (6) ◽  
Author(s):  
Kaifeng Li ◽  
Dongbo Cai ◽  
Zhangqian Wang ◽  
Zhili He ◽  
Shouwen Chen

ABSTRACT Bacillus strains are important industrial bacteria that can produce various biochemical products. However, low transformation efficiencies and a lack of effective genome editing tools have hindered its widespread application. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 techniques have been utilized in many organisms as genome editing tools because of their high efficiency and easy manipulation. In this study, an efficient genome editing method was developed for Bacillus licheniformis using a CRISPR-Cas9 nickase integrated into the genome of B. licheniformis DW2 with overexpression driven by the P43 promoter. The yvmC gene was deleted using the CRISPR-Cas9n technique with homology arms of 1.0 kb as a representative example, and an efficiency of 100% was achieved. In addition, two genes were simultaneously disrupted with an efficiency of 11.6%, and the large DNA fragment bacABC (42.7 kb) was deleted with an efficiency of 79.0%. Furthermore, the heterologous reporter gene aprN , which codes for nattokinase in Bacillus subtilis , was inserted into the chromosome of B. licheniformis with an efficiency of 76.5%. The activity of nattokinase in the DWc9nΔ7/pP43SNT-S sacC strain reached 59.7 fibrinolytic units (FU)/ml, which was 25.7% higher than that of DWc9n/pP43SNT-S sacC . Finally, the engineered strain DWc9nΔ7 (Δ epr Δ wprA Δ mpr Δ aprE Δ vpr Δ bprA Δ bacABC ), with multiple disrupted genes, was constructed using the CRISPR-Cas9n technique. Taken together, we have developed an efficient genome editing tool based on CRISPR-Cas9n in B. licheniformis . This tool could be applied to strain improvement for future research. IMPORTANCE As important industrial bacteria, Bacillus strains have attracted significant attention due to their production of biological products. However, genetic manipulation of these bacteria is difficult. The CRISPR-Cas9 system has been applied to genome editing in some bacteria, and CRISPR-Cas9n was proven to be an efficient and precise tool in previous reports. The significance of our research is the development of an efficient, more precise, and systematic genome editing method for single-gene deletion, multiple-gene disruption, large DNA fragment deletion, and single-gene integration in Bacillus licheniformis via Cas9 nickase. We also applied this method to the genetic engineering of the host strain for protein expression.


2019 ◽  
Vol 85 (23) ◽  
Author(s):  
Juan Pablo Gomez-Escribano ◽  
Jean Franco Castro ◽  
Valeria Razmilic ◽  
Scott A. Jarmusch ◽  
Gerhard Saalbach ◽  
...  

ABSTRACT Analysis of the genome sequence of Streptomyces leeuwenhoekii C34T identified biosynthetic gene clusters (BGCs) for three different lasso peptides (Lp1, Lp2, and Lp3) which were not known to be made by the strain. Lasso peptides represent relatively new members of the RiPP (ribosomally synthesized and posttranslationally modified peptides) family of natural products and have not been extensively studied. Lp3, whose production could be detected in culture supernatants from S. leeuwenhoekii C34T and after heterologous expression of its BGC in Streptomyces coelicolor, is identical to the previously characterized chaxapeptin. Lp1, whose production could not be detected or achieved heterologously, appears to be identical to a recently identified member of the citrulassin family of lasso peptides. Since production of Lp2 by S. leeuwenhoekii C34T was not observed, its BGC was also expressed in S. coelicolor. The lasso peptide was isolated and its structure confirmed by mass spectrometry and nuclear magnetic resonance analyses, revealing a novel structure that appears to represent a new family of lasso peptides. IMPORTANCE Recent developments in genome sequencing combined with bioinformatic analysis have revealed that actinomycetes contain a plethora of unexpected BGCs and thus have the potential to produce many more natural products than previously thought. This reflects the inability to detect the production of these compounds under laboratory conditions, perhaps through the use of inappropriate growth media or the absence of the environmental cues required to elicit expression of the corresponding BGCs. One approach to overcoming this problem is to circumvent the regulatory mechanisms that control expression of the BGC in its natural host by deploying heterologous expression. The generally compact nature of lasso peptide BGCs makes them particularly amenable to this approach, and, in the example given here, analysis revealed a new member of the lasso peptide family of RiPPs. This approach should be readily applicable to other cryptic lasso peptide gene clusters and would also facilitate the design and production of nonnatural variants by changing the sequence encoding the core peptide, as has been achieved with other classes of RiPPs.


2019 ◽  
Vol 85 (15) ◽  
Author(s):  
Shota Nagamine ◽  
Chengwei Liu ◽  
Jumpei Nishishita ◽  
Takuto Kozaki ◽  
Kaho Sogahata ◽  
...  

ABSTRACT Basidiomycete fungi are an attractive resource for biologically active natural products for use in pharmaceutically relevant compounds. Recently, genome projects on mushroom fungi have provided a great deal of biosynthetic gene cluster information. However, functional analyses of the gene clusters for natural products were largely unexplored because of the difficulty of cDNA preparation and lack of gene manipulation tools for basidiomycete fungi. To develop a versatile host for basidiomycete genes, we examined gene expression using genomic DNA sequences in the robust ascomycete host Aspergillus oryzae, which is frequently used for the production of metabolites from filamentous fungi. Exhaustive expression of 30 terpene synthase genes from the basidiomycetes Clitopilus pseudo-pinsitus and Stereum hirsutum showed two splicing patterns, i.e., completely spliced cDNAs giving terpenes (15 cases) and mostly spliced cDNAs, indicating that A. oryzae correctly spliced most introns at the predicted positions and lengths. The mostly spliced cDNAs were expressed after PCR-based removal of introns, resulting in the successful production of terpenes (14 cases). During this study, we observed relatively frequent mispredictions in the automated program. Hence, the complementary use of A. oryzae expression and automated prediction will be a powerful tool for genome mining. IMPORTANCE The recent large influx of genome sequences from basidiomycetes, which are prolific producers of bioactive natural products, may provide opportunities to develop novel drug candidates. The development of a reliable expression system is essential for the genome mining of natural products because of the lack of a tractable host for heterologous expression of basidiomycete genes. For this purpose, we applied the ascomycete Aspergillus oryzae system for the direct expression of fungal natural product biosynthetic genes from genomic DNA. Using this system, 29 sesquiterpene synthase genes and diterpene biosynthetic genes for bioactive pleuromutilin were successfully expressed. Together with the use of computational tools for intron prediction, this Aspergillus oryzae system represents a practical method for the production of basidiomycete natural products.


2021 ◽  
Vol 16 (11) ◽  
pp. 155-163
Author(s):  
Alsubki Roua

The global health system is under a constant threat from microbial outbreaks. The innovation in genetic engineering has created an existential threat to national, regional and international security. This threat, that can edit microbial or human genomes, requires global attention. In the current review, a comprehensive literature search was conducted using PubMed, SCOPUS and Google Scholar to identify literature discussing modern biotechnology tools as well as relevance to biosafety in the Middle east region. This review was undertaken to provide an overview of biological threats due to advancements in genetic engineering, making it possible to insert or delete specific genes to increase the virulence of particular microbes. These pathogens or other toxic factors can be multiplied by technology, creating new biological weapons. Genome editing technologies including meganucleases (MNs), zinc finger nucleases (ZFNs), transcription activator-like effector (TALE)-nucleases (TALENs) and recently discovered clustered regularly interspaced short palindromic repeats (CRISPR/Cas) induce a double strand break at specific DNA target site. Genome editing technologies lead to an irreversible and permanent alteration of the genetic code and therefore, can inevitably result in security risks. Vulnerabilities in Middle Eastern laboratories raise the prospect of high levels of pathogenic microbes potentially creating a weakness in the diagnosis and monitoring of epidemics. Furthermore, the lack of regional legislation to regulate biosafety and biosecurity may lead to biological threat at the regional level.


2018 ◽  
Vol 85 (4) ◽  
Author(s):  
Qiang Zhou ◽  
Guang-Cai Luo ◽  
Huizhan Zhang ◽  
Gong-Li Tang

ABSTRACT A number of strategies have been developed to mine novel natural products based on biosynthetic gene clusters and there have been dozens of successful cases facilitated by the development of genomic sequencing. During our study on biosynthesis of the antitumor polyketide kosinostatin (KST), we found that the genome of Micromonospora sp. strain TP-A0468, the producer of KST, contains other potential polyketide gene clusters, with no encoded products detected. Deletion of kst cluster led to abolishment of KST and the enrichment of several new compounds, which were isolated and characterized as 16-demethylrifamycins (referred to here as compounds 3 to 6). Transcriptional analysis demonstrated that the expression of the essential genes related to the biosynthesis of compounds 3 to 6 was comparable to the level in the wild-type and in the kst cluster deletion strain. This indicates that the accumulation of these compounds was due to the redirection of metabolic flux rather than transcriptional activation. Genetic disruption, chemical complementation, and bioinformatic analysis revealed that the production of compounds 3 to 6 was accomplished by cross talk between the two distantly placed polyketide gene clusters pks3 and M-rif. This finding not only enriches the analogue pool and the biosynthetic diversity of rifamycins but also provides an auxiliary strategy for natural product discovery through genome mining in polyketide-producing microorganisms. IMPORTANCE Natural products are essential in the development of novel clinically used drugs. Discovering new natural products and modifying known compounds are still the two main ways to generate new candidates. Here, we have discovered several rifamycins with varied skeleton structures by redirecting the metabolic flux from the predominant polyketide biosynthetic pathway to the rifamycin pathway in the marine actinomycetes species Micromonospora sp. strain TP-A0468. Rifamycins are indispensable chemotherapeutics in the treatment of various diseases such as tuberculosis, leprosy, and AIDS-related mycobacterial infections. This study exemplifies a useful method for the discovery of cryptic natural products in genome-sequenced microbes. Moreover, the 16-demethylrifamycins and their genetically manipulable producer provide a new opportunity in the construction of novel rifamycin derivates to aid in the defense against the ever-growing drug resistance of Mycobacterium tuberculosis.


2018 ◽  
Vol 85 (3) ◽  
Author(s):  
Takuya Katayama ◽  
Hidetoshi Nakamura ◽  
Yue Zhang ◽  
Arnaud Pascal ◽  
Wataru Fujii ◽  
...  

ABSTRACT Filamentous fungi are used for food fermentation and industrial production of recombinant proteins. They also serve as a source of secondary metabolites and are recently expected as hosts for heterologous production of useful secondary metabolites. Multiple-step genetic engineering is required to enhance industrial production involving these fungi, but traditional sequential modification of multiple genes using a limited number of selection markers is laborious. Moreover, efficient genetic engineering techniques for industrial strains have not yet been established. We have previously developed a clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9-based mutagenesis technique for the industrial filamentous fungus Aspergillus oryzae, enabling mutation efficiency of 10 to 20%. Here, we improved the CRISPR/Cas9 approach by including an AMA1-based autonomously replicating plasmid harboring the drug resistance marker ptrA. By using the improved mutagenesis technique, we successfully modified A. oryzae wild and industrial strains, with a mutation efficiency of 50 to 100%. Conditional expression of the Aoace2 gene from the AMA1-based plasmid severely inhibited fungal growth. This enabled forced recycling of the plasmid, allowing repeated genome editing. Further, double mutant strains were successfully obtained with high efficiency by expressing two guide RNA molecules from the genome-editing plasmid. Cotransformation of fungal cells with the genome-editing plasmid together with a circular donor DNA enabled marker-free multiplex gene deletion/integration in A. oryzae. The presented repeatable marker-free genetic engineering approach for mutagenesis and gene deletion/integration will allow for efficient modification of multiple genes in industrial fungal strains, increasing their applicability. IMPORTANCE Multiple gene modifications of specific fungal strains are required for achieving industrial-scale production of enzymes and secondary metabolites. In the present study, we developed an efficient multiple genetic engineering technique for the filamentous fungus Aspergillus oryzae. The approach is based on a clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 system and recycling of an AMA1-based autonomous replicating plasmid. Because the plasmid harbors a drug resistance marker (ptrA), the approach does not require the construction of auxotrophic industrial strains prior to genome editing and allows for forced recycling of the gene-editing plasmid. The established plasmid-recycling technique involves an Aoace2-conditional expression cassette, whose induction severely impairs fungal growth. We used the developed genetic engineering techniques for highly efficient marker-free multiple gene deletion/integration in A. oryzae. The genome-editing approaches established in the present study, which enable unlimited repeatable genetic engineering, will facilitate multiple gene modification of industrially important fungal strains.


2017 ◽  
Vol 83 (6) ◽  
Author(s):  
Zhong Xu ◽  
Yemin Wang ◽  
Keith F. Chater ◽  
Hong-Yu Ou ◽  
H. Howard Xu ◽  
...  

ABSTRACT Gram-positive Streptomyces bacteria produce thousands of bioactive secondary metabolites, including antibiotics. To systematically investigate genes affecting secondary metabolism, we developed a hyperactive transposase-based Tn5 transposition system and employed it to mutagenize the model species Streptomyces coelicolor, leading to the identification of 51,443 transposition insertions. These insertions were distributed randomly along the chromosome except for some preferred regions associated with relatively low GC content in the chromosomal core. The base composition of the insertion site and its flanking sequences compiled from the 51,443 insertions implied a 19-bp expanded target site surrounding the insertion site, with a slight nucleic acid base preference in some positions, suggesting a relative randomness of Tn5 transposition targeting in the high-GC Streptomyces genome. From the mutagenesis library, 724 mutants involving 365 genes had altered levels of production of the tripyrrole antibiotic undecylprodigiosin (RED), including 17 genes in the RED biosynthetic gene cluster. Genetic complementation revealed that most of the insertions (more than two-thirds) were responsible for the changed antibiotic production. Genes associated with branched-chain amino acid biosynthesis, DNA metabolism, and protein modification affected RED production, and genes involved in signaling, stress, and transcriptional regulation were overrepresented. Some insertions caused dramatic changes in RED production, identifying future targets for strain improvement. IMPORTANCE High-GC Gram-positive streptomycetes and related actinomycetes have provided more than 100 clinical drugs used as antibiotics, immunosuppressants, and antitumor drugs. Their genomes harbor biosynthetic genes for many more unknown compounds with potential as future drugs. Here we developed a useful genome-wide mutagenesis tool based on the transposon Tn5 for the study of secondary metabolism and its regulation. Using Streptomyces coelicolor as a model strain, we found that chromosomal insertion was relatively random, except at some hot spots, though there was evidence of a slightly preferred 19-bp target site. We then used prodiginine production as a model to systematically survey genes affecting antibiotic biosynthesis, providing a global view of antibiotic regulation. The analysis revealed 348 genes that modulate antibiotic production, among which more than half act to reduce production. These might be valuable targets in future investigations of regulatory mechanisms, for strain improvement, and for the activation of silent biosynthetic gene clusters.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Hassan Hakimi ◽  
Takahiro Ishizaki ◽  
Yuto Kegawa ◽  
Osamu Kaneko ◽  
Shin-ichiro Kawazu ◽  
...  

ABSTRACT Babesia bovis, the most virulent causative agent of bovine babesiosis, is prevalent in tropical and subtropical regions of the world. Although the whole-genome sequence was released more than a decade ago, functional analysis of the genomics of this parasite is hampered by the limited breadth of genetic engineering tools. In this study, we implemented the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system for B. bovis and demonstrated its potential for genome editing. Cas9 and human dihydrofolate reductase (hDHFR) were simultaneously expressed by the B. bovis elongation factor-1α bidirectional promoter, and a single guide RNA was expressed via the B. bovis U6 spliceosomal RNA promoter. Using a single plasmid construct, we were able to add an epitope tag to spherical body protein 3 (SBP3), introduce a point mutation into thioredoxin peroxidase 1 (tpx-1) to impair the function of the product, and replace the tpx-1 open reading frame with the other protein. Epitope tagging of SBP3 was efficient using this system, with a negligible number of remaining wild-type parasites and a pure transgenic population produced by allelic replacement of tpx-1. This advancement in genetic engineering tools for B. bovis will aid functional analysis of the genome and underpin characterization of candidate drug and vaccine targets. IMPORTANCE Babesia bovis is the most virulent cause of bovine babesiosis worldwide. The disease consequences are death, abortion, and economical loss due to reduced milk and meat production. Available vaccines are not effective, treatment options are limited, and emergence of drug and acaricide resistance has been reported from different regions. There is an urgent need to identify new drug and vaccine targets. Greater than half of the genes in B. bovis genome, including several expanded gene families which are unique for Babesia spp., have no predicted function. The available genetic engineering tools are based on conventional homologous recombination, which is time-consuming and inefficient. In this study, we adapted the CRISPR/Cas9 system as a robust genetic engineering tool for B. bovis. This advancement will aid future functional studies of uncharacterized genes.


2021 ◽  
Vol 7 (11) ◽  
Author(s):  
Juan Pablo Gomez-Escribano ◽  
Lis Algora Gallardo ◽  
Kenan A. J. Bozhüyük ◽  
Steven G. Kendrew ◽  
Benjamin D. Huckle ◽  
...  

Streptomyces clavuligerus is an industrially important actinomycete whose genetic manipulation is limited by low transformation and conjugation efficiencies, low levels of recombination of introduced DNA, and difficulty in obtaining consistent sporulation. We describe the construction and application of versatile vectors for Cas9-mediated genome editing of this strain. To design spacer sequences with confidence, we derived a highly accurate genome assembly for an isolate of the type strain (ATCC 27064). This yielded a chromosome assembly (6.75 Mb) plus assemblies for pSCL4 (1795 kb) and pSCL2 (149 kb). The strain also carries pSCL1 (12 kb), but its small size resulted in only partial sequence coverage. The previously described pSCL3 (444 kb) is not present in this isolate. Using our Cas9 vectors, we cured pSCL4 with high efficiency by targeting the plasmid’s parB gene. Five of the resulting pSCL4-cured isolates were characterized and all showed impaired sporulation. Shotgun genome sequencing of each of these derivatives revealed large deletions at the ends of the chromosomes in all of them, and for two clones sufficient sequence data was obtained to show that the chromosome had circularized. Taken together, these data indicate that pSCL4 is essential for the structural stability of the linear chromosome.


Sign in / Sign up

Export Citation Format

Share Document