scholarly journals Comparison of Ergot Alkaloid Biosynthesis Gene Clusters in Claviceps Species Indicates Loss of Late Pathway Steps in Evolution of C. fusiformis

2007 ◽  
Vol 73 (22) ◽  
pp. 7185-7191 ◽  
Author(s):  
Nicole Lorenz ◽  
Ella V. Wilson ◽  
Caroline Machado ◽  
Christopher L. Schardl ◽  
Paul Tudzynski

ABSTRACT The grass parasites Claviceps purpurea and Claviceps fusiformis produce ergot alkaloids (EA) in planta and in submerged culture. Whereas EA synthesis (EAS) in C. purpurea proceeds via clavine intermediates to lysergic acid and the complex ergopeptines, C. fusiformis produces only agroclavine and elymoclavine. In C. purpurea the EAS gene (EAS) cluster includes dmaW (encoding the first pathway step), cloA (elymoclavine oxidation to lysergic acid), and the lpsA/lpsB genes (ergopeptine formation). We analyzed the corresponding C. fusiformis EAS cluster to investigate the evolutionary basis for chemotypic differences between the Claviceps species. Other than three peptide synthetase genes (lpsC and the tandem paralogues lpsA1 and lpsA2), homologues of all C. purpurea EAS genes were identified in C. fusiformis, including homologues of lpsB and cloA, which in C. purpurea encode enzymes for steps after clavine synthesis. Rearrangement of the cluster was evident around lpsB, which is truncated in C. fusiformis. This and several frameshift mutations render CflpsB a pseudogene (CflpsB Ψ ). No obvious inactivating mutation was identified in CfcloA. All C. fusiformis EAS genes, including CflpsB Ψ and CfcloA, were expressed in culture. Cross-complementation analyses demonstrated that CfcloA and CflpsB Ψ were expressed in C. purpurea but did not encode functional enzymes. In contrast, CpcloA catalyzed lysergic acid biosynthesis in C. fusiformis, indicating that C. fusiformis terminates its EAS pathway at elymoclavine because the cloA gene product is inactive. We propose that the C. fusiformis EAS cluster evolved from a more complete cluster by loss of some lps genes and by rearrangements and mutations inactivating lpsB and cloA.

2017 ◽  
Vol 107 (5) ◽  
pp. 504-518 ◽  
Author(s):  
Simona Florea ◽  
Daniel G. Panaccione ◽  
Christopher L. Schardl

Ergot alkaloids are highly diverse in structure, exhibit diverse effects on animals, and are produced by diverse fungi in the phylum Ascomycota, including pathogens and mutualistic symbionts of plants. These mycotoxins are best known from the fungal family Clavicipitaceae and are named for the ergot fungi that, through millennia, have contaminated grains and caused mass poisonings, with effects ranging from dry gangrene to convulsions and death. However, they are also useful sources of pharmaceuticals for a variety of medical purposes. More than a half-century of research has brought us extensive knowledge of ergot-alkaloid biosynthetic pathways from common early steps to several taxon-specific branches. Furthermore, a recent flurry of genome sequencing has revealed the genomic processes underlying ergot-alkaloid diversification. In this review, we discuss the evolution of ergot-alkaloid biosynthesis genes and gene clusters, including roles of gene recruitment, duplication and neofunctionalization, as well as gene loss, in diversifying structures of clavines, lysergic acid amides, and complex ergopeptines. Also reviewed are prospects for manipulating ergot-alkaloid profiles to enhance suitability of endophytes for forage grasses.


2007 ◽  
Vol 13 ◽  
pp. 491-493
Author(s):  
H. Harzer ◽  
R.D. Johnson ◽  
S. Rasmussen ◽  
C.R. Voisey ◽  
L.J. Johnson

Symbiotic grass associations with fungal endophytes (genera Neotyphodium and Epichloë) display enhanced fitness as well as prolonged field persistence over their endophyte free equivalents. Perennial ryegrass, an important agronomic grass, is typically associated with the N. lolii endophyte. The endophyte lives within the intercellular spaces without inducing any symptoms in the plant. The aim of this study is to elucidate the biosynthetic function of fungal secondary metabolite gene clusters. Non-ribosomal peptide synthetase genes (NRPSs) of unknown function were targeted, as these genes are commonly associated with the production of bioactive peptides some of which are ecologically important. Some novel endophyte NRPS genes have been identified using a degenerate PCR screen; one of these, NRPS5 will be discussed here. Clones were obtained by screening a fosmid Epichloë festucae genomic DNA library and we are currently determining gene function by using targeted gene replacement followed by an assessment in vitro and in planta using metabolomics and appropriate bioassay screens. Keywords: endophyte, NRPS, secondary metabolism


2010 ◽  
Vol 76 (6) ◽  
pp. 1822-1830 ◽  
Author(s):  
Nicole Lorenz ◽  
Jana Olšovská ◽  
Miroslav Šulc ◽  
Paul Tudzynski

ABSTRACT Ergot alkaloids are indole-derived secondary metabolites synthesized by the phytopathogenic ascomycete Claviceps purpurea. In wild-type strains, they are exclusively produced in the sclerotium, a hibernation structure; for biotechnological applications, submerse production strains have been generated by mutagenesis. It was shown previously that the enzymes specific for alkaloid biosynthesis are encoded by a gene cluster of 68.5 kb. This ergot alkaloid cluster consists of 14 genes coregulated and expressed under alkaloid-producing conditions. Although the role of some of the cluster genes in alkaloid biosynthesis could be confirmed by a targeted knockout approach, further functional analyses are needed, especially concerning the early pathway-specific steps up to the production of clavine alkaloids. Therefore, the gene ccsA, originally named easE and preliminarily annotated as coding for a flavin adenine dinucleotide-containing oxidoreductase, was deleted in the C. purpurea strain P1, which is able to synthesize ergot alkaloids in axenic culture. Five independent knockout mutants were analyzed with regard to alkaloid-producing capability. Thin-layer chromatography (TLC), ultrapressure liquid chromatography (UPLC), and mass spectrometry (MS) analyses revealed accumulation of N-methyl-dimethylallyltryptophan (Me-DMAT) and traces of dimethylallyltryptophan (DMAT), the first pathway-specific intermediate. Since other alkaloid intermediates could not be detected, we conclude that deletion of ccsA led to a block in alkaloid biosynthesis beyond Me-DMAT formation. Complementation with a ccsA/gfp fusion construct restored alkaloid biosynthesis. These data indicate that ccsA encodes the chanoclavine I synthase or a component thereof catalyzing the conversion of N-methyl-dimethylallyltryptophan to chanoclavine I.


2007 ◽  
Vol 73 (8) ◽  
pp. 2571-2579 ◽  
Author(s):  
Damien J. Fleetwood ◽  
Barry Scott ◽  
Geoffrey A. Lane ◽  
Aiko Tanaka ◽  
Richard D. Johnson

ABSTRACT Clavicipitaceous fungal endophytes of the genera Epichloë and Neotyphodium form symbioses with grasses of the subfamily Pooideae, in which they can synthesize an array of bioprotective alkaloids. Some strains produce the ergopeptine alkaloid ergovaline, which is implicated in livestock toxicoses caused by ingestion of endophyte-infected grasses. Cloning and analysis of a nonribosomal peptide synthetase (NRPS) gene from Neotyphodium lolii revealed a putative gene cluster for ergovaline biosynthesis containing a single-module NRPS gene, lpsB, and other genes orthologous to genes in the ergopeptine gene cluster of Claviceps purpurea and the clavine cluster of Aspergillus fumigatus. Despite conservation of gene sequence, gene order is substantially different between the N. lolii, C. purpurea, and A. fumigatus ergot alkaloid gene clusters. Southern analysis indicated that the N. lolii cluster was linked with previously identified ergovaline biosynthetic genes dmaW and lpsA. The ergovaline genes are closely associated with transposon relics, including retrotransposons and autonomous and nonautonomous DNA transposons. All genes in the cluster were highly expressed in planta, but expression was very low or undetectable in mycelia from axenic culture. This work provides a genetic foundation for elucidating biochemical steps in the ergovaline pathway, the ecological role of individual ergot alkaloid compounds, and the regulation of their synthesis in planta.


2010 ◽  
Vol 76 (24) ◽  
pp. 8143-8149 ◽  
Author(s):  
Sebastian Bergmann ◽  
Alexander N. Funk ◽  
Kirstin Scherlach ◽  
Volker Schroeckh ◽  
Ekaterina Shelest ◽  
...  

ABSTRACT Filamentous fungi produce numerous natural products that constitute a consistent source of potential drug leads, yet it seems that the majority of natural products are overlooked since most biosynthesis gene clusters are silent under standard cultivation conditions. Screening secondary metabolite genes of the model fungus Aspergillus nidulans, we noted a silent gene cluster on chromosome II comprising two nonribosomal peptide synthetase (NRPS) genes, inpA and inpB, flanked by a regulatory gene that we named scpR for secondary metabolism cross-pathway regulator. The induced expression of the scpR gene using the promoter of the alcohol dehydrogenase AlcA led to the transcriptional activation of both the endogenous scpR gene and the NRPS genes. Surprisingly, metabolic profiling of the supernatant of mycelia overexpressing scpR revealed the production of the polyketide asperfuranone. Through transcriptome analysis we found that another silent secondary metabolite gene cluster located on chromosome VIII coding for asperfuranone biosynthesis was specifically induced. Quantitative reverse transcription-PCR proved the transcription not only of the corresponding polyketide synthase (PKS) biosynthesis genes, afoE and afoG, but also of their activator, afoA, under alcAp-scpR-inducing conditions. To exclude the possibility that the product of the inp cluster induced the asperfuranone gene cluster, a strain carrying a deletion of the NRPS gene inpB and, in addition, the alcAp-scpR overexpression cassette was generated. In this strain, under inducing conditions, transcripts of the biosynthesis genes of both the NRPS-containing gene cluster inp and the asperfuranone gene cluster except gene inpB were detected. Moreover, the existence of the polyketide product asperfuranone indicates that the transcription factor ScpR controls the expression of the asperfuranone biosynthesis gene cluster. This expression as well as the biosynthesis of asperfuranone was abolished after the deletion of the asperfuranone activator gene afoA, indicating that ScpR binds to the afoA promoter. To the best of our knowledge, this is the first report of regulatory cross talk between two biosynthesis gene clusters located on different chromosomes.


Author(s):  
Abigail M. Jones ◽  
Chey R. Steen ◽  
Daniel G. Panaccione

Ergot alkaloids derived from lysergic acid have impacted humanity as contaminants of crops and as the bases of pharmaceuticals prescribed to treat dementia, migraines, and other disorders. Several plant-associated fungi in the Clavicipitaceae produce lysergic acid derivatives, but many of these fungi are difficult to culture and manipulate. Some Aspergillus species, which may be more ideal experimental and industrial organisms, contain an alternate branch of the ergot alkaloid pathway but none were known to produce lysergic acid derivatives. We mined genomes of Aspergillus species for ergot alkaloid synthesis ( eas ) gene clusters and discovered three species–– A. leporis, A. homomorphus, and A. hancockii ––had eas clusters indicative of the capacity to produce a lysergic acid amide. In culture, A. leporis, A. homomorphus, and A. hancockii produced lysergic acid amides, predominantly lysergic acid α-hydroxyethylamide (LAH). Aspergillus leporis and A. homomorphus produced high concentrations of LAH and secreted most of their ergot alkaloid yield into the culture medium. Phylogenetic analyses indicated genes encoding enzymes leading to the synthesis of lysergic acid were orthologous to those of the lysergic acid amide-producing Clavicipitaceae; however, genes to incorporate lysergic acid into an amide derivative evolved from different ancestral genes in the Aspergillus species. Our data demonstrate fungi outside the Clavicipitaceae produce lysergic acid amides and indicate the capacity to produce lysergic acid evolved once, but the ability to insert it into LAH evolved independently in Aspergillus species and the Clavicipitaceae. The LAH-producing Aspergillus species may be useful for study and production of these pharmaceutically important compounds. IMPORTANCE Lysergic acid derivatives are specialized metabolites with historical, agricultural, and medical significance and were known heretofore only from fungi in one family, the Clavicipitaceae. Our data show that several Aspergillus species, representing a different family of fungi, also produce lysergic acid derivatives and that the ability to put lysergic acid into its amide forms evolved independently in the two lineages of fungi. From microbiological and pharmaceutical perspectives, the Aspergillus species may represent better experimental and industrial organisms than the currently employed, lysergic acid producers of the plant-associated Clavicipitaceae. The observation that both lineages independently evolved the derivative lysergic acid α-hydroxyethylamide (LAH), among many possible lysergic acid amides, suggests a selection for this metabolite.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 705
Author(s):  
Awdhesh Kumar Mishra ◽  
Kwang-Hyun Baek

Salicylic acid (SA) is an active secondary metabolite that occurs in bacteria, fungi, and plants. SA and its derivatives (collectively called salicylates) are synthesized from chorismate (derived from shikimate pathway). SA is considered an important phytohormone that regulates various aspects of plant growth, environmental stress, and defense responses against pathogens. Besides plants, a large number of bacterial species, such as Pseudomonas, Bacillus, Azospirillum, Salmonella, Achromobacter, Vibrio, Yersinia, and Mycobacteria, have been reported to synthesize salicylates through the NRPS/PKS biosynthetic gene clusters. This bacterial salicylate production is often linked to the biosynthesis of small ferric-ion-chelating molecules, salicyl-derived siderophores (known as catecholate) under iron-limited conditions. Although bacteria possess entirely different biosynthetic pathways from plants, they share one common biosynthetic enzyme, isochorismate synthase, which converts chorismate to isochorismate, a common precursor for synthesizing SA. Additionally, SA in plants and bacteria can undergo several modifications to carry out their specific functions. In this review, we will systematically focus on the plant and bacterial salicylate biosynthesis and its metabolism.


Foods ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 150 ◽  
Author(s):  
Francesca Debegnach ◽  
Simona Patriarca ◽  
Carlo Brera ◽  
Emanuela Gregori ◽  
Elisa Sonego ◽  
...  

Genus Claviceps is a plant pathogen able to produce a group of toxins, ergot alkaloids (EAs), whose effects have been known since the Middle Ages (ergotism). Claviceps purpurea is the most important representative specie, known to infect more than 400 monocotyledonous plants including economically important cereal grains (e.g., rye, wheat, triticale). EAs are not regulated as such. Maximum limits are in the pipeline of the EU Commission while at present ergot sclerotia content is set by the Regulation (EC) No. 1881/2006 in unprocessed cereals (0.05% as a maximum). This study aimed to investigate the presence of the six principal EAs (ergometrine, ergosine, ergocornine, α-ergocryptine, ergotamine and ergocristine) and their relative epimers (-inine forms) in rye- and wheat-based products. Of the samples, 85% resulted positive for at least one of the EAs. Wheat bread was the product with the highest number of positivity (56%), followed by wheat flour (26%). Rye and wheat bread samples showed the highest values when the sum of the EAs was considered, and durum wheat bread was the more contaminated sample (1142.6 μg/kg). These results suggest that ongoing monitoring of EAs in food products is critical until maximum limits are set.


2018 ◽  
Vol 98 (4) ◽  
pp. 688-700 ◽  
Author(s):  
T. Grusie ◽  
V. Cowan ◽  
J. Singh ◽  
J. McKinnon ◽  
B. Blakley

Cows were fed ration for 9 wk containing 5, 48, 201, and 822 μg kg−1 ergot alkaloids. The objective was to evaluate the impact of ergot consumption in beef cow–calf operations. Ergot alkaloids up to 822 μg kg−1 did not alter the weight of peripartum and postpartum beef cows (P = 0.93) or nursing calves (P = 0.08), rectal temperature (P = 0.16), or plasma prolactin concentrations (P = 0.30) at moderate ambient temperatures. Ergot did not influence the time (>1 ng mL−1; P = 0.79) or the progesterone concentration (P = 0.38) at the time of first postpartum rise or the size of the first (14 ± 0.6 mm; P = 0.40) and second (13 ± 0.5 mm; P = 0.41) follicles to ovulate. The maximum size of the first postpartum corpus luteum (CL) was 4 mm larger in the 822 μg kg−1 ergot group compared with the control (P = 0.03) for the first ovulation post partum, but not for the second (P = 0.11). There was no effect of ergot exposure on the number of days until the appearance of the first (43 ± 4 d; P = 0.95) or second (52 ± 4 d; P = 0.98) CL post partum. Ergot alkaloid concentrations up to 822 μg kg−1 did not affect pregnancy rates (X2 = 0.36). In conclusion, ergot alkaloid exposure for 9 wk to concentrations as high as 822 μg kg−1 did not alter performance in pregnant and postpartum beef cattle at moderate ambient temperatures.


2014 ◽  
Vol 80 (20) ◽  
pp. 6465-6472 ◽  
Author(s):  
Sarah L. Robinson ◽  
Daniel G. Panaccione

ABSTRACTDifferent lineages of fungi produce distinct classes of ergot alkaloids. Lysergic acid-derived ergot alkaloids produced by fungi in the Clavicipitaceae are particularly important in agriculture and medicine. The pathway to lysergic acid is partly elucidated, but the gene encoding the enzyme that oxidizes the intermediate agroclavine is unknown. We investigated two candidate agroclavine oxidase genes from the fungusEpichloë festucaevar.lolii×Epichloë typhinaisolate Lp1 (henceforth referred to asEpichloësp. Lp1), which produces lysergic acid-derived ergot alkaloids. Candidate geneseasHandcloAwere expressed in a mutant strain of the moldAspergillus fumigatus, which typically produces a subclass of ergot alkaloids not derived from agroclavine or lysergic acid. Candidate genes were coexpressed with theEpichloësp. Lp1 allele ofeasA, which encodes an enzyme that catalyzed the synthesis of agroclavine from anA. fumigatusintermediate; the agroclavine then served as the substrate for the candidate agroclavine oxidases. Strains expressingeasAandcloAfromEpichloësp. Lp1 produced lysergic acid from agroclavine, a process requiring a cumulative six-electron oxidation and a double-bond isomerization. Strains that accumulated excess agroclavine (as a result ofEpichloësp. Lp1easAexpression in the absence ofcloA) metabolized it into two novel ergot alkaloids for which provisional structures were proposed on the basis of mass spectra and precursor feeding studies. Our data indicate that CloA catalyzes multiple reactions to produce lysergic acid from agroclavine and that combining genes from different ergot alkaloid pathways provides an effective strategy to engineer important pathway molecules and novel ergot alkaloids.


Sign in / Sign up

Export Citation Format

Share Document