scholarly journals Novel Electrochemically Active Bacterium Phylogenetically Related to Arcobacter butzleri, Isolated from a Microbial Fuel Cell

2009 ◽  
Vol 75 (23) ◽  
pp. 7326-7334 ◽  
Author(s):  
Viatcheslav Fedorovich ◽  
Matthew C. Knighton ◽  
Eulyn Pagaling ◽  
F. Bruce Ward ◽  
Andrew Free ◽  
...  

ABSTRACT Exoelectrogenic bacteria are organisms that can transfer electrons to extracellular insoluble electron acceptors and have the potential to be used in devices such as microbial fuel cells (MFCs). Currently, exoelectrogens have been identified in the Alpha-, Beta-, Gamma- and Deltaproteobacteria, as well as in the Firmicutes and Acidobacteria. Here, we describe use of culture-independent methods to identify two members of the genus Arcobacter in the Epsilon p roteobacteria that are selectively enriched in an acetate-fed MFC. One of these organisms, Arcobacter butzleri strain ED-1, associates with the electrode and rapidly generates a strong electronegative potential as a pure culture when it is supplied with acetate. A mixed-community MFC in which ∼90% of the population is comprised of the two Arcobacter species generates a maximal power density of 296 mW/liter. This demonstration of exoelectrogenesis by strain ED-1 is the first time that this property has been shown for members of this genus.

2012 ◽  
Vol 66 (4) ◽  
pp. 748-753 ◽  
Author(s):  
Jaecheul Yu ◽  
Younghyun Park ◽  
Haein Cho ◽  
Jieun Chun ◽  
Jiyun Seon ◽  
...  

Microbial fuel cells (MFCs) can convert chemical energy to electricity using microbes as catalysts and a variety of organic wastewaters as substrates. However, electron loss occurs when fermentable substrates are used because fermentation bacteria and methanogens are involved in electron flow from the substrates to electricity. In this study, MFCs using glucose (G-MFC), propionate (P-MFC), butyrate (B-MFC), acetate (A-MFC), and a mix (M-MFC, glucose:propionate:butyrate:acetate = 1:1:1:1) were operated in batch mode. The metabolites and microbial communities were analyzed. The current was the largest electron sink in M-, G-, B-, and A-MFCs; the initial chemical oxygen demands (CODini) involved in current production were 60.1% for M-MFC, 52.7% for G-MFC, 56.1% for B-MFC, and 68.3% for A-MFC. Most of the glucose was converted to propionate (40.6% of CODini) and acetate (21.4% of CODini) through lactate (80.3% of CODini) and butyrate (6.1% of CODini). However, an unknown source (62.0% of CODini) and the current (34.5% of CODini) were the largest and second-largest electron sinks in P-MFC. Methane gas was only detected at levels of more than 10% in G- and M-MFCs, meaning that electrochemically active bacteria (EAB) could out-compete acetoclastic methanogens. The microbial communities were different for fermentable and non-fermentable substrate-fed MFCs. Probably, bacteria related to Lactococcus spp. found in G-MFCs with fermentable substrates would be involved in both fermentation and electricity generation. Acinetobacter-like species, and Rhodobacter-like species detected in all the MFCs would be involved in oxidation of organic compounds and electricity generation.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 574
Author(s):  
Emilius Sudirjo ◽  
Paola Y. Constantino Diaz ◽  
Matteo Cociancich ◽  
Rens Lisman ◽  
Christian Snik ◽  
...  

Large-scale implementation of (plant) microbial fuel cells is greatly limited by high electrode costs. In this work, the potential of exploiting electrochemically active self-assembled biofilms in fabricating three-dimensional bioelectrodes for (plant) microbial fuel cells with minimum use of electrode materials was studied. Three-dimensional robust bioanodes were successfully developed with inexpensive polyurethane foams (PU) and activated carbon (AC). The PU/AC electrode bases were fabricated via a water-based sorption of AC particles on the surface of the PU cubes. The electrical current was enhanced by growth of bacteria on the PU/AC bioanode while sole current collectors produced minor current. Growth and electrochemical activity of the biofilm were shown with SEM imaging and DNA sequencing of the microbial community. The electric conductivity of the PU/AC electrode enhanced over time during bioanode development. The maximum current and power density of an acetate fed MFC reached 3 mA·m−2 projected surface area of anode compartment and 22 mW·m−3 anode compartment. The field test of the Plant-MFC reached a maximum performance of 0.9 mW·m−2 plant growth area (PGA) at a current density of 5.6 mA·m−2 PGA. A paddy field test showed that the PU/AC electrode was suitable as an anode material in combination with a graphite felt cathode. Finally, this study offers insights on the role of electrochemically active biofilms as natural enhancers of the conductivity of electrodes and as transformers of inert low-cost electrode materials into living electron acceptors.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Joseph Oram ◽  
Lars J. C. Jeuken

ABSTRACTExoelectrogenic bacteria are defined by their ability to respire on extracellular and insoluble electron acceptors and have applications in bioremediation and microbial electrochemical systems (MESs), while playing important roles in biogeochemical cycling.Shewanella oneidensisMR-1, which has become a model organism for the study of extracellular respiration, is known to display taxis toward insoluble electron acceptors, including electrodes. Multiple mechanisms have been proposed for MR-1’s tactic behavior, and, here, we report on the role of electrochemical potential by video microscopy cell tracking experiments in three-electrode electrochemical cells. MR-1 trajectories were determined using a particle tracking algorithm and validated with Shannon’s entropy method. Tactic response by MR-1 in the electrochemical cell was observed to depend on the applied potential, as indicated by the average velocity and density of motile (>4 µm/s) MR-1 close to the electrode (<50 µm). Tactic behavior was observed at oxidative potentials, with a strong switch between the potentials −0.15 to −0.25 V versus the standard hydrogen electrode (SHE), which coincides with the reduction potential of flavins. The average velocity and density of motile MR-1 close to the electrode increased when riboflavin was added (2 µM), but were completely absent in a ΔmtrC/ΔomcAmutant of MR-1. Besides flavin’s function as an electron mediator to support anaerobic respiration on insoluble electron acceptors, we propose that riboflavin is excreted by MR-1 to sense redox gradients in its environment, aiding taxis toward insoluble electron acceptors, including electrodes in MESs.IMPORTANCEPrevious hypotheses of tactic behavior of exoelectrogenic bacteria are based on techniques that do not accurately control the electrochemical potential, such as chemical-in-plug assays or microscopy tracking experiments in two-electrode cells. Here, we have revisited previous experiments and, for the first time, performed microscopy cell-tracking experiments in three-electrode electrochemical cells, with defined electrode potentials. Based on these experiments, taxis toward electrodes is observed to switch at about −0.2 V versus standard hydrogen electrode (SHE), coinciding with the reduction potential of flavins.


Chemosphere ◽  
2015 ◽  
Vol 140 ◽  
pp. 12-17 ◽  
Author(s):  
Chuan-Shu He ◽  
Zhe-Xuan Mu ◽  
Hou-Yun Yang ◽  
Ya-Zhou Wang ◽  
Yang Mu ◽  
...  

2015 ◽  
Vol 72 (1) ◽  
pp. 106-115 ◽  
Author(s):  
Soumya Pandit ◽  
Santimoy Khilari ◽  
Shantonu Roy ◽  
M. M. Ghangrekar ◽  
Debabrata Pradhan ◽  
...  

Abstract An electrochemically active bacteria Pseudomonas aeruginosa IIT BT SS1 was isolated from a dark fermentative spent media fed anode, and a bioaugmentation technique using the isolated strain was used to improve the start-up time of a microbial fuel cell (MFC). Higher volumetric current density and lower start-up time were observed with the augmented system MFC-PM (13.7 A/m3) when compared with mixed culture MFC-M (8.72 A/m3) during the initial phase. This enhanced performance in MFC-PM was possibly due to the improvement in electron transfer ability by the augmented strain. However, pure culture MFC-P showed maximum volumetric current density (17 A/m3) due to the inherent electrogenic properties of Pseudomonas sp. An electrochemical impedance spectroscopic (EIS) study, along with matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) analysis, supported the influence of isolated species in improving the MFC performance. The present study indicates that the bioaugmentation strategy using the isolated Pseudomonas sp. can be effectively utilized to decrease the start-up time of MFC.


2013 ◽  
Vol 139 ◽  
pp. 141-148 ◽  
Author(s):  
Jianmei Luo ◽  
Jia Yang ◽  
Huanhuan He ◽  
Tao Jin ◽  
Li Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document