scholarly journals Relative Performance of MinION (Oxford Nanopore Technologies) versus Sequel (Pacific Biosciences) Third-Generation Sequencing Instruments in Identification of Agricultural and Forest Fungal Pathogens

2019 ◽  
Vol 85 (21) ◽  
Author(s):  
Kaire Loit ◽  
Kalev Adamson ◽  
Mohammad Bahram ◽  
Rasmus Puusepp ◽  
Sten Anslan ◽  
...  

ABSTRACT Culture-based molecular identification methods have revolutionized detection of pathogens, yet these methods are slow and may yield inconclusive results from environmental materials. The second-generation sequencing tools have much-improved precision and sensitivity of detection, but these analyses are costly and may take several days to months. Of the third-generation sequencing techniques, the portable MinION device (Oxford Nanopore Technologies) has received much attention because of its small size and possibility of rapid analysis at reasonable cost. Here, we compare the relative performances of two third-generation sequencing instruments, MinION and Sequel (Pacific Biosciences), in identification and diagnostics of fungal and oomycete pathogens from conifer (Pinaceae) needles and potato (Solanum tuberosum) leaves and tubers. We demonstrate that the Sequel instrument is efficient for metabarcoding of complex samples, whereas MinION is not suited for this purpose due to a high error rate and multiple biases. However, we find that MinION can be utilized for rapid and accurate identification of dominant pathogenic organisms and other associated organisms from plant tissues following both amplicon-based and PCR-free metagenomics approaches. Using the metagenomics approach with shortened DNA extraction and incubation times, we performed the entire MinION workflow, from sample preparation through DNA extraction, sequencing, bioinformatics, and interpretation, in 2.5 h. We advocate the use of MinION for rapid diagnostics of pathogens and potentially other organisms, but care needs to be taken to control or account for multiple potential technical biases. IMPORTANCE Microbial pathogens cause enormous losses to agriculture and forestry, but current combined culturing- and molecular identification-based detection methods are too slow for rapid identification and application of countermeasures. Here, we develop new and rapid protocols for Oxford Nanopore MinION-based third-generation diagnostics of plant pathogens that greatly improve the speed of diagnostics. However, due to high error rate and technical biases in MinION, the Pacific BioSciences Sequel platform is more useful for in-depth amplicon-based biodiversity monitoring (metabarcoding) from complex environmental samples.

2019 ◽  
Author(s):  
Kaire Loit ◽  
Kalev Adamson ◽  
Mohammad Bahram ◽  
Rasmus Puusepp ◽  
Sten Anslan ◽  
...  

ABSTRACTCulture-based molecular characterization methods have revolutionized detection of pathogens, yet these methods are either slow or imprecise. The second-generation sequencing tools have much improved precision and sensitivity of detection, but the analysis processes are costly and take several days. Of third-generation techniques, the portable Oxford Nanopore MinION device has received much attention because of its small size and possibility of rapid analysis at reasonable cost. Here, we compare the relative performance of two third-generation sequencing instruments, MinION and Pacific Biosciences Sequel in identification and diagnostics of pathogens from conifer needles and potato leaves and tubers. We demonstrate that Sequel is efficient in metabarcoding of complex samples, whereas MinION is not suited for this purpose due to the high error rate and multiple biases. However, we find that MinION can be utilized for rapid and accurate identification of dominant pathogenic organisms from plant tissues following both amplicon-based and metagenomics-based approaches. Using the PCR-free approach with shortened extraction and incubation times, we performed the entire MinION workflow from sample preparation through DNA extraction, sequencing, bioinformatics and interpretation in two and half hours. We advocate the use of MinION for rapid diagnostics of pathogens, but care needs to be taken to control or account for all potential technical biases.IMPORTANCEWe develop new and rapid protocols for MinION-based third-generation diagnostics of plant pathogens that greatly improves the speed and precision of diagnostics. Due to high error rate and technical biases in MinION, PacBio Sequel platform is more useful for amplicon-based metabarcoding from complex biological samples.


2020 ◽  
Vol 10 (4) ◽  
pp. 1193-1196
Author(s):  
Yoshinori Fukasawa ◽  
Luca Ermini ◽  
Hai Wang ◽  
Karen Carty ◽  
Min-Sin Cheung

We propose LongQC as an easy and automated quality control tool for genomic datasets generated by third generation sequencing (TGS) technologies such as Oxford Nanopore technologies (ONT) and SMRT sequencing from Pacific Bioscience (PacBio). Key statistics were optimized for long read data, and LongQC covers all major TGS platforms. LongQC processes and visualizes those statistics automatically and quickly.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Juliane C Dohm ◽  
Philipp Peters ◽  
Nancy Stralis-Pavese ◽  
Heinz Himmelbauer

Abstract Third-generation sequencing technologies provided by Pacific Biosciences and Oxford Nanopore Technologies generate read lengths in the scale of kilobasepairs. However, these reads display high error rates, and correction steps are necessary to realize their great potential in genomics and transcriptomics. Here, we compare properties of PacBio and Nanopore data and assess correction methods by Canu, MARVEL and proovread in various combinations. We found total error rates of around 13% in the raw datasets. PacBio reads showed a high rate of insertions (around 8%) whereas Nanopore reads showed similar rates for substitutions, insertions and deletions of around 4% each. In data from both technologies the errors were uniformly distributed along reads apart from noisy 5′ ends, and homopolymers appeared among the most over-represented kmers relative to a reference. Consensus correction using read overlaps reduced error rates to about 1% when using Canu or MARVEL after patching. The lowest error rate in Nanopore data (0.45%) was achieved by applying proovread on MARVEL-patched data including Illumina short-reads, and the lowest error rate in PacBio data (0.42%) was the result of Canu correction with minimap2 alignment after patching. Our study provides valuable insights and benchmarks regarding long-read data and correction methods.


Author(s):  
E. S. Gribchenko

The transcriptome profiles the cv. Frisson mycorrhizal roots and inoculated nitrogen-fixing nodules were investigated using the Oxford Nanopore sequencing technology. A database of gene isoforms and their expression has been created.


2017 ◽  
Author(s):  
Krešimir Križanović ◽  
Ivan Sović ◽  
Ivan Krpelnik ◽  
Mile Šikić

AbstractNext generation sequencing technologies have made RNA sequencing widely accessible and applicable in many areas of research. In recent years, 3rd generation sequencing technologies have matured and are slowly replacing NGS for DNA sequencing. This paper presents a novel tool for RNA mapping guided by gene annotations. The tool is an adapted version of a previously developed DNA mapper – GraphMap, tailored for third generation sequencing data, such as those produced by Pacific Biosciences or Oxford Nanopore Technologies devices. It uses gene annotations to generate a transcriptome, uses a DNA mapping algorithm to map reads to the transcriptome, and finally transforms the mappings back to genome coordinates. Modified version of GraphMap is compared on several synthetic datasets to the state-of-the-art RNAseq mappers enabled to work with third generation sequencing data. The results show that our tool outperforms other tools in general mapping quality.


2020 ◽  
Vol 71 (18) ◽  
pp. 5313-5322 ◽  
Author(s):  
Kathryn Dumschott ◽  
Maximilian H-W Schmidt ◽  
Harmeet Singh Chawla ◽  
Rod Snowdon ◽  
Björn Usadel

Abstract DNA sequencing was dominated by Sanger’s chain termination method until the mid-2000s, when it was progressively supplanted by new sequencing technologies that can generate much larger quantities of data in a shorter time. At the forefront of these developments, long-read sequencing technologies (third-generation sequencing) can produce reads that are several kilobases in length. This greatly improves the accuracy of genome assemblies by spanning the highly repetitive segments that cause difficulty for second-generation short-read technologies. Third-generation sequencing is especially appealing for plant genomes, which can be extremely large with long stretches of highly repetitive DNA. Until recently, the low basecalling accuracy of third-generation technologies meant that accurate genome assembly required expensive, high-coverage sequencing followed by computational analysis to correct for errors. However, today’s long-read technologies are more accurate and less expensive, making them the method of choice for the assembly of complex genomes. Oxford Nanopore Technologies (ONT), a third-generation platform for the sequencing of native DNA strands, is particularly suitable for the generation of high-quality assemblies of highly repetitive plant genomes. Here we discuss the benefits of ONT, especially for the plant science community, and describe the issues that remain to be addressed when using ONT for plant genome sequencing.


2020 ◽  
Author(s):  
Jose M. Haro-Moreno ◽  
Mario López-Pérez ◽  
Francisco Rodríguez-Valera

ABSTRACTBackgroundThird-generation sequencing has penetrated little in metagenomics due to the high error rate and dependence for assembly on short-read designed bioinformatics. However, 2nd generation sequencing metagenomics (mostly Illumina) suffers from limitations, particularly in allowing assembly of microbes with high microdiversity or retrieving the flexible (adaptive) compartment of prokaryotic genomes.ResultsHere we have used different 3rd generation techniques to study the metagenome of a well-known marine sample from the mixed epipelagic water column of the winter Mediterranean. We have compared Oxford Nanopore and PacBio last generation technologies with the classical approach using Illumina short reads followed by assembly. PacBio Sequel II CCS appears particularly suitable for cellular metagenomics due to its low error rate. Long reads allow efficient direct retrieval of complete genes (473M/Tb) and operons before assembly, facilitating annotation and compensates the limitations of short reads or short-read assemblies. MetaSPAdes was the most appropriate assembly program when used in combination with short reads. The assemblies of the long reads allow also the reconstruction of much more complete metagenome-assembled genomes, even from microbes with high microdiversity. The flexible genome of reconstructed MAGs is much more complete and allows rescuing more adaptive genes.ConclusionsFor most applications of metagenomics, from community structure analysis to ecosystem functioning, long-reads should be applied whenever possible. Particularly for in-silico screening of biotechnologically useful genes, or population genomics, long-read metagenomics appears presently as a very fruitful approach and can be used from raw reads, before a computing-demanding (and potentially artefactual) assembly step.


Author(s):  
Ehsan Haghshenas ◽  
Hossein Asghari ◽  
Jens Stoye ◽  
Cedric Chauve ◽  
Faraz Hach

AbstractThird generation sequencing technologies from platforms such as Oxford Nanopore Technologies and Pacific Biosciences have paved the way for building more contiguous assemblies and complete reconstruction of genomes. The larger effective length of the reads generated with these technologies has provided a mean to overcome the challenges of short to mid-range repeats. Currently, accurate long read assemblers are computationally expensive while faster methods are not as accurate. Therefore, there is still an unmet need for tools that are both fast and accurate for reconstructing small and large genomes. Despite the recent advances in third generation sequencing, researchers tend to generate second generation reads for many of the analysis tasks. Here, we present HASLR, a hybrid assembler which uses both second and third generation sequencing reads to efficiently generate accurate genome assemblies. Our experiments show that HASLR is not only the fastest assembler but also the one with the lowest number of misassemblies on all the samples compared to other tested assemblers. Furthermore, the generated assemblies in terms of contiguity and accuracy are on par with the other tools on most of the samples.AvailabilityHASLR is an open source tool available at https://github.com/vpc-ccg/haslr.


Sign in / Sign up

Export Citation Format

Share Document