scholarly journals Toxigenic Clostridium difficile PCR Ribotypes from Wastewater Treatment Plants in Southern Switzerland

2012 ◽  
Vol 78 (18) ◽  
pp. 6643-6646 ◽  
Author(s):  
Vincenza Romano ◽  
Vincenzo Pasquale ◽  
Karel Krovacek ◽  
Federica Mauri ◽  
Antonella Demarta ◽  
...  

ABSTRACTThe occurrence ofClostridium difficilein nine wastewater treatment plants in the Ticino Canton (southern Switzerland) was investigated. The samples were collected from raw sewage influents and from treated effluents. Forty-seven out of 55 characterizedC. difficilestrains belonged to 13 different reference PCR ribotypes (009, 010, 014, 015, 039, 052, 053, 066, 070, 078, 101, 106, and 117), whereas 8 strains did not match any of those available in our libraries. The most frequently isolated ribotype (40%) was 078, isolated from six wastewater treatment plants, whereas ribotype 066, a toxigenic emerging ribotype isolated from patients admitted to hospitals in Europe and Switzerland, was isolated from the outgoing effluent of one plant. The majority of the isolates (85%) were toxigenic. Forty-nine percent of them produced toxin A, toxin B, and the binary toxin (toxigenic profile A+B+CDT+), whereas 51% showed the profile A+B+CDT−. Interestingly, eight ribotypes (010, 014, 015, 039, 066, 078, 101, and 106) were among the riboprofiles isolated from symptomatic patients admitted to the hospitals of the Ticino Canton in 2010. Despite the limitation of sampling, this study highlights that toxigenic ribotypes ofC. difficileinvolved in human infections may occur in both incoming and outgoing biological wastewater treatment plants. Such a finding raises concern about the possible contamination of water bodies that receive wastewater treatment plant effluents and about the safe reuse of treated wastewater.

2015 ◽  
Vol 53 (11) ◽  
pp. 3702-3704 ◽  
Author(s):  
Grace O. Androga ◽  
Julie Hart ◽  
Niki F. Foster ◽  
Adrian Charles ◽  
David Forbes ◽  
...  

Large clostridial toxin-negative, binary toxin-positive (A−B−CDT+) strains ofClostridium difficileare almost never associated with clinically significantC. difficileinfection (CDI), possibly because such strains are not detected by most diagnostic methods. We report the isolation of an A−B−CDT+ribotype 033 (RT033) strain ofC. difficilefrom a young patient with ulcerative colitis and severe diarrhea.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2764
Author(s):  
Argyro Plevri ◽  
Klio Monokrousou ◽  
Christos Makropoulos ◽  
Christos Lioumis ◽  
Nikolaos Tazes ◽  
...  

Water reuse and recycling is gaining momentum as a way to improve the circularity of cities, while recognizing the central role of water within a circular economy (CE) context. However, such interventions often depend on the location of wastewater treatment plants and the treatment technologies installed in their premises, while relying on an expensive piped network to ensure that treated wastewater gets transported from the treatment plant to the point of demand. Thus, the penetration level of treated wastewater as a source of non-potable supply in dense urban environments is limited. This paper focuses on the demonstration of a sewer mining (SM) unit as a source of treated wastewater, as part of a larger and more holistic configuration that examines all three ‘streams’ associated with water in CE: water, energy and materials. The application area is the Athens Plant Nursery, in the (water stressed) city of Athens, Greece. SM technology is in fact a mobile wastewater treatment unit in containers able to extract wastewater from local sewers, treat it directly and reuse at the point of demand even in urban environments with limited space. The unit consists of a membrane bioreactor unit (MBR) and a UV disinfection unit and produces high quality reclaimed water for irrigation and also for aquifer recharge during the winter. Furthermore, a short overview of the integrated nutrient and energy recovery subsystem is presented in order to conceptualise the holistic approach and circularity of the whole configuration. The SM technology demonstrates flexibility, scalability and replicability, which are important characteristics for innovation uptake within the emerging CE context and market.


2016 ◽  
Vol 55 (3) ◽  
pp. 865-876 ◽  
Author(s):  
M. D. Cairns ◽  
M. D. Preston ◽  
C. L. Hall ◽  
D. N. Gerding ◽  
P. M. Hawkey ◽  
...  

ABSTRACT The diarrheal pathogen Clostridium difficile consists of at least six distinct evolutionary lineages. The RT017 lineage is anomalous, as strains only express toxin B, compared to strains from other lineages that produce toxins A and B and, occasionally, binary toxin. Historically, RT017 initially was reported in Asia but now has been reported worldwide. We used whole-genome sequencing and phylogenetic analysis to investigate the patterns of global spread and population structure of 277 RT017 isolates from animal and human origins from six continents, isolated between 1990 and 2013. We reveal two distinct evenly split sublineages (SL1 and SL2) of C. difficile RT017 that contain multiple independent clonal expansions. All 24 animal isolates were contained within SL1 along with human isolates, suggesting potential transmission between animals and humans. Genetic analyses revealed an overrepresentation of antibiotic resistance genes. Phylogeographic analyses show a North American origin for RT017, as has been found for the recently emerged epidemic RT027 lineage. Despite having only one toxin, RT017 strains have evolved in parallel from at least two independent sources and can readily transmit between continents.


2006 ◽  
Vol 54 (10) ◽  
pp. 87-93 ◽  
Author(s):  
T. Hashimoto ◽  
K. Takahashi ◽  
T. Murakami

Since the natural estrogens 17 β-estradiol (E2) and estron (E1), and the synthetic estrogen 17 α-ethynyl estradiol (EE2) have strong endocrine disrupting effects and the tendency to persist in effluent from wastewater treatment plants, effective measures are needed to remove them from wastewater. In this research, to gain an understanding of the characteristics of estrogen decomposition by ozonation, experiments were conducted using effluent from an actual wastewater treatment plant. In this experiment, estrogen was added to effluent at a concentration of 200 ng/l and 20 ng/l before the ozonation experiments. The results showed 90% or more of estrogen concentration and estrogenic activity of E2, E1 and EE2 to be removed at an ozone dose of 1 mg/l. At an ozone dose of 3 mg/l, the estrogen concentration and estrogenic activity of E2, E1 and EE2 in the treated water fell below the detection limit. The removal rate was not influenced by the kind of estrogen. No generation of byproducts with estrogenic activity was observed. The authors conclude that estrogen in secondary treated wastewater can be almost entirely removed at the practical ozone dose rate applied for the purpose of disinfection, which is up to about 5 mg/l.


2018 ◽  
Author(s):  
Olayinka Osuolale ◽  
Anthony Okoh

ABSTRACTBackgroundPoorly or partially treated wastewater disposed of can contaminate water and even properly treated sewage can have its problems. The highlight of this danger is wastewater treatment plants serving as reservoir for proliferation of antibiotic resistant organisms. We have reported the state of two wastewater treatment in the Eastern Cape of South Africa which discharge poorly and partially treated effluents. Our aims to identify Vibrio spp. and their antibiotic profiles in treated final effluent discharge from wastewater treatment plant.MethodsCulture based approach using the TCBS agar for isolationVibriospp., presumptive isolates were purified and confirmed using PCR. The confirmed isolated were also genotyped to identify the species present. The antibiotic profiling of the confirmed isolates was using the CLSI recommended first line antibiotics for Vibrio.ResultsOut of the 786 presumptive isolates, 374 were confirmed asVibriospp. None of the Vibrio spp. pathotypes were present in the confirmed isolates. Randomized isolates of 100 Vibrio spp. were selected, > 90 % of the isolates were susceptible to Ciprofloxacin, and > 50 – 80 % for Ampicillin, Chloramphenicol, Tetracycline, Cefotaxime, and Trimethoprim-sulfamethoxazole respectively.ConclusionsWe are able to isolate Vibrio spp. from treated effluents but none of their pathotypes were present. The antibiotic agents considered for primary testing which are ciprofloxacin was the most effective of the antibiotic drugs, followed by cefotaxime, tetracycline with less susceptibility. Contamination from discharged effluents from wastewater treatment can lead to spread of spread of disease in this environment. The WWTPs studied are sources of pollution to surface water with environmental and public health.


2021 ◽  
Author(s):  
Semase Matseleng ◽  
Ozekeke Ogbeide ◽  
Patricks' Otomo Voua

Abstract Wastewater treatment facilities in developing countries like South Africa are major sources of contaminants via effluent into the environment, which could portend high toxicity risks for non-target flora and fauna. To this end, a study was conducted to determine the ecotoxicological responses of selected organism to treated and untreated wastewater from the wastewater treatment plants in an industrial town. The snail Helix pomatia was exposed to OECD artificial soil spiked with untreated or treated wastewater at the following concentrations: 0, 25, 50, 75, 100%. The ecotoxicological responses of Helix pomatia to wastewater were determined by assessing the biomass, survival, reproduction and biomarker responses (Catalase ‒ CAT and Acetylcholinesterase ‒ AChE activities). The overall results showed significant effects on the survival, reproduction and biomass of H. pomatia. Similar results were observed for juvenile emergence. An EC50 of 5.751% for egg production and an EC50 of 6.233% for juvenile emergence were determined in the untreated wastewater. Such indices could not be computed for the treated wastewater, indicating a decreased in toxicity between the untreated and the treated samples. For both the AChE and CAT activities, there was no statistical difference between treated and untreated wastewater treatments. The results from this study highlight the toxic effects of untreated wastewater and indicate that treated wastewater (effluent) released from the wastewater treatment plant in Phuthaditjhaba remains suitable for invertebrate fauna such as H. pomatia.


2021 ◽  
Author(s):  
Yan Li ◽  
Ethan Wood ◽  
Gergely Kosa ◽  
Bushra Muzamil ◽  
Christian Vogelsang ◽  
...  

Abstract This study demonstrated that the application of filamentous co-culture could be a promising supplementary approach to further purify municipal tertiary wastewater in Nordic country. Initial screening of 25 algae strains across multiple genera revealed that Spirogyra sp. and Klebsormidium sp. were suitable for use as a coculture for phycoremediation of the tertiary effluent from a wastewater treatment plant, and this result was validated in three consecutive outdoor pilot tests at 10–15 oC. In the first two batches of pilot tests, the total prosperous and ammonium were depleted close to zero in 24 hours, while the pH in the wastewater increased from 7 to 9. In the 3rd batch, CO2 was thereby added for pH control. Macronutrients (N and P) were successfully removed from the treated wastewater. The total algae biomass increased 2 to 3 times over 7 days with average algae productivity of 1.68 g m2 d− 1. Meanwhile, the produced algae biomass accumulated notable mineral elements (Ca, Mg, K, Fe and Al) and some heavy metals at levels of g kg− 1 and mg kg− 1, respectively. In light of circular economy concept, the produced biomass could be used for different valorizations based on the analytical analysis. This study provides a new insight of phycoremediation for further purification of municipal treated wastewater, by effectively using filamentous algae coculture. Given a great potential for further optimization and improvement, this proof of concept will benefit to the green transition of wastewater treatment plants in Nordic country.


2012 ◽  
Vol 194 (23) ◽  
pp. 6670-6671 ◽  
Author(s):  
Emilie E. L. Muller ◽  
Nicolás Pinel ◽  
John D. Gillece ◽  
James M. Schupp ◽  
Lance B. Price ◽  
...  

ABSTRACT“CandidatusMicrothrix” bacteria are deeply branching filamentous actinobacteria which occur at the water-air interface of biological wastewater treatment plants, where they are often responsible for foaming and bulking. Here, we report the first draft genome sequence of a strain from this genus: “CandidatusMicrothrix parvicella” strain Bio17-1.


2014 ◽  
Vol 80 (14) ◽  
pp. 4251-4259 ◽  
Author(s):  
Ibone Anza ◽  
Dolors Vidal ◽  
Celia Laguna ◽  
Sandra Díaz-Sánchez ◽  
Sergio Sánchez ◽  
...  

ABSTRACTDue to the scarcity of water resources in the “Mancha Húmeda” Biosphere Reserve, the use of treated wastewater has been proposed as a solution for the conservation of natural threatened floodplain wetlands. In addition, wastewater treatment plants of many villages pour their effluent into nearby natural lakes. We hypothesized that certain avian pathogens present in wastewater may cause avian mortalities which would trigger avian botulism outbreaks. With the aim of testing our hypothesis, 24 locations distributed in three wetlands, two that receive wastewater effluents and one serving as a control, were monitored during a year. Sediment, water, water bird feces, and invertebrates were collected for the detection of putative avian pathogenicEscherichia coli(APEC),Salmonellaspp.,Clostridium perfringenstype A, andClostridium botulinumtype C/D. Also, water and sediment physicochemical properties were determined. Overall, APEC,C. perfringens, andC. botulinumwere significantly more prevalent in samples belonging to the wetlands which receive wastewater. The occurrence of a botulism outbreak in one of the studied wetlands coincided with high water temperatures and sediment 5-day biochemical oxygen demand (BOD5), a decrease in water redox potential, chlorophylla, and sulfate levels, and an increase in water inorganic carbon levels. The presence ofC. botulinumin bird feces before the onset of the outbreak indicates that carrier birds exist and highlights the risk of botulinum toxin production in their carcasses if they die by other causes such as bacterial diseases, which are more probable in wastewater wetlands.


Sign in / Sign up

Export Citation Format

Share Document