scholarly journals Analysis of Amino Acid Residues Involved in Catalysis of Polyethylene Glycol Dehydrogenase from Sphingopyxis terrae, Using Three-Dimensional Molecular Modeling-Based Kinetic Characterization of Mutants

2006 ◽  
Vol 72 (6) ◽  
pp. 4388-4396 ◽  
Author(s):  
Takeshi Ohta ◽  
Takeshi Kawabata ◽  
Ken Nishikawa ◽  
Akio Tani ◽  
Kazuhide Kimbara ◽  
...  

ABSTRACT Polyethylene glycol dehydrogenase (PEGDH) from Sphingopyxis terrae (formerly Sphingomonas terrae) is composed of 535 amino acid residues and one flavin adenine dinucleotide per monomer protein in a homodimeric structure. Its amino acid sequence shows 28.5 to 30.5% identity with glucose oxidases from Aspergillus niger and Penicillium amagasakiense. The ADP-binding site and the signature 1 and 2 consensus sequences of glucose-methanol-choline oxidoreductases are present in PEGDH. Based on three-dimensional molecular modeling and kinetic characterization of wild-type PEGDH and mutant PEGDHs constructed by site-directed mutagenesis, residues potentially involved in catalysis and substrate binding were found in the vicinity of the flavin ring. The catalytically important active sites were assigned to His-467 and Asn-511. One disulfide bridge between Cys-379 and Cys-382 existed in PEGDH and seemed to play roles in both substrate binding and electron mediation. The Cys-297 mutant showed decreased activity, suggesting the residue's importance in both substrate binding and electron mediation, as well as Cys-379 and Cys-382. PEGDH also contains a motif of a ubiquinone-binding site, and coenzyme Q10 was utilized as an electron acceptor. Thus, we propose several important amino acid residues involved in the electron transfer pathway from the substrate to ubiquinone.

2015 ◽  
Vol 13 (30) ◽  
pp. 8261-8270 ◽  
Author(s):  
Akimitsu Miyaji ◽  
Teppei Miyoshi ◽  
Ken Motokura ◽  
Toshihide Baba

The substrate binding site of AMO/pMMO family proteins can discriminate between the prochiral hydrogens at the C-2 position ofn-alkanes. We predict that at least one of the three amino acid residues at the di-copper site affects the discriminating ability of the family proteins.


2021 ◽  
Author(s):  
Thuy Minh Nguyen ◽  
Masaru Goto ◽  
Shohei Noda ◽  
Minenosuke Matsutani ◽  
Yuki Hodoya ◽  
...  

Gluconobacter sp. CHM43 oxidizes mannitol to fructose and then does fructose to 5-keto-D-fructose (5KF) in the periplasmic space. Since NADPH-dependent 5KF reductase was found in the soluble fraction of Gluconobacter spp., 5KF might be transported into the cytoplasm and metabolized. Here we identified the GLF_2050 gene as the kfr gene encoding 5KF reductase (KFR). A mutant strain devoid of the kfr gene showed lower KFR activity and no 5KF consumption. The crystal structure revealed that KFR is similar to NADP + -dependent shikimate dehydrogenase (SDH), which catalyzes the reversible NADP + -dependent oxidation of shikimate to 3-dehydroshikimate. We found that several amino acid residues in the putative substrate-binding site of KFR were different from those of SDH. Phylogenetic analyses revealed that only a subclass in the SDH family containing KFR conserved such a unique substrate-binding site. We constructed KFR derivatives with amino acid substitutions, including replacement of Asn21 in the substrate-binding site with Ser that is found in SDH. The KFR-N21S derivative showed a strong increase in the K M value for 5KF, but a higher shikimate oxidation activity than wild-type KFR, suggesting that Asn21 is important for 5KF binding. In addition, the conserved catalytic dyad Lys72 and Asp108 were individually substituted for Asn. The K72N and D108N derivatives showed only negligible activities without a dramatic change in the K M value for 5KF, suggesting a similar catalytic mechanism to that of SDH. Taken together, we suggest that KFR is a new member of the SDH family. Importance A limited number of species of acetic acid bacteria, such as Gluconobacter sp. strain CHM43, produce 5-ketofructose at a high yield, a potential low calorie sweetener. Here we show that an NADPH-dependent 5-ketofructose reductase (KFR) is involved in 5-ketofructose degradation and we characterize this enzyme with respect to its structure, phylogeny, and function. The crystal structure of KFR was similar to that of shikimate dehydrogenase, which is functionally crucial in the shikimate pathway in bacteria and plants. Phylogenetic analysis suggested that KFR is positioned in a small sub-group of the shikimate dehydrogenase family. Catalytically important amino acid residues were also conserved and their relevance was experimentally validated. Thus, we propose KFR as a new member of shikimate dehydrogenase family.


1999 ◽  
Vol 181 (15) ◽  
pp. 4686-4689 ◽  
Author(s):  
Chen-Hsiang Chiu ◽  
Chao-Zong Lee ◽  
Kung-Shih Lin ◽  
Ming F. Tam ◽  
Lih-Yuan Lin

ABSTRACT Amino acid residues in the metal-binding and putative substrate-binding sites of Escherichia coli methionine aminopeptidase (MAP) were mutated, and their effects on the function of the enzyme were investigated. Substitution of any amino acid residue at the metal-binding site resulted in complete loss of the two cobalt ions bound to the protein and diminished the enzyme activity. However, only Cys70 and Trp221 at the putative substrate-binding site are involved in the catalytic activity of MAP. Changing either of them caused partial loss of enzyme activity, while mutations at both positions abolished MAP function. Both residues are found to be conserved in type I but not type II MAPs.


2018 ◽  
Author(s):  
Kota Kasahara ◽  
Shintaro Minami ◽  
Yasunori Aizawa

ABSTRACTThe principle of three-dimensional protein structure formation is a long-standing conundrum in structural biology. A globular domain of a soluble protein is formed by a network of atomic contacts among amino acid residues, but regions external to globular domains, like loop and linker, often do not have intramolecular contacts with globular domains. Although these regions can play key roles for protein function as interfaces for intermolecular interactions, their nature remains unclear. Here, we termed protein segments external to globular domains as floating segments and sought for them in tens of thousands of entries in the Protein Data Bank. As a result, we found that 0.72 % of residues are in floating segments. Regarding secondary structural elements, coil structures are enriched in floating segments, especially for long segments. Interactions with polypeptides and polynucleotides, but not small compounds, are enriched in floating segments. The amino acid preferences of floating segments are similar to those of surface residues, with exceptions; the small side chain amino acids, Gly and Ala, are preferred, and some charged side chains, Arg and His, are disfavored for floating segments compared to surface residues. Our comprehensive characterization of floating segments may provide insights into understanding protein sequence-structure-function relationships.


2020 ◽  
Vol 16 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Fortunatus C. Ezebuo ◽  
Ikemefuna C. Uzochukwu

Background: Sulfotransferase family comprises key enzymes involved in drug metabolism. Oxamniquine is a pro-drug converted into its active form by schistosomal sulfotransferase. The conformational dynamics of side-chain amino acid residues at the binding site of schistosomal sulfotransferase towards activation of oxamniquine has not received attention. Objective: The study investigated the conformational dynamics of binding site residues in free and oxamniquine bound schistosomal sulfotransferase systems and their contribution to the mechanism of oxamniquine activation by schistosomal sulfotransferase using molecular dynamics simulations and binding energy calculations. Methods: Schistosomal sulfotransferase was obtained from Protein Data Bank and both the free and oxamniquine bound forms were subjected to molecular dynamics simulations using GROMACS-4.5.5 after modeling it’s missing amino acid residues with SWISS-MODEL. Amino acid residues at its binding site for oxamniquine was determined and used for Principal Component Analysis and calculations of side-chain dihedrals. In addition, binding energy of the oxamniquine bound system was calculated using g_MMPBSA. Results: The results showed that binding site amino acid residues in free and oxamniquine bound sulfotransferase sampled different conformational space involving several rotameric states. Importantly, Phe45, Ile145 and Leu241 generated newly induced conformations, whereas Phe41 exhibited shift in equilibrium of its conformational distribution. In addition, the result showed binding energy of -130.091 ± 8.800 KJ/mol and Phe45 contributed -9.8576 KJ/mol. Conclusion: The results showed that schistosomal sulfotransferase binds oxamniquine by relying on hybrid mechanism of induced fit and conformational selection models. The findings offer new insight into sulfotransferase engineering and design of new drugs that target sulfotransferase.


1987 ◽  
Vol 262 (8) ◽  
pp. 3754-3761
Author(s):  
A.J. Ganzhorn ◽  
D.W. Green ◽  
A.D. Hershey ◽  
R.M. Gould ◽  
B.V. Plapp

Author(s):  
Wei He ◽  
Wenhui Zhang ◽  
Zhenhua Chu ◽  
Yu Li

The aim of this paper is to explore the mechanism of the change in oestrogenic activity of PCBs molecules before and after modification by designing new PCBs derivatives in combination with molecular docking techniques through the constructed model of oestrogenic activity of PCBs molecules. We found that the weakened hydrophobic interaction between the hydrophobic amino acid residues and hydrophobic substituents at the binding site of PCB derivatives and human oestrogen receptor alpha (hERα) was the main reason for the weakened binding force and reduced anti-oestrogenic activity. It was consistent with the information that the hydrophobic field displayed by the 3D contour maps in the constructed oestrogen activity CoMSIA model was one of the main influencing force fields. The hydrophobic interaction between PCB derivatives and oestrogen-active receptors was negatively correlated with the average distance between hydrophobic substituents and hydrophobic amino acid residues at the hERα-binding site, and positively correlated with the number of hydrophobic amino acid residues. In other words, the smaller the average distance between the hydrophobic amino acid residues at the binding sites between the two and the more the number of them, and the stronger the oestrogen activity expression degree of PCBS derivative molecules. Therefore, hydrophobic interactions between PCB derivatives and the oestrogen receptor can be reduced by altering the microenvironmental conditions in humans. This reduces the ability of PCB derivatives to bind to the oestrogen receptor and can effectively modulate the risk of residual PCB derivatives to produce oestrogenic activity in humans.


Sign in / Sign up

Export Citation Format

Share Document