scholarly journals Exploring the Diversity of the Bifidobacterial Population in the Human Intestinal Tract

2009 ◽  
Vol 75 (6) ◽  
pp. 1534-1545 ◽  
Author(s):  
Francesca Turroni ◽  
Elena Foroni ◽  
Paola Pizzetti ◽  
Vanessa Giubellini ◽  
Angela Ribbera ◽  
...  

ABSTRACT Although the health-promoting roles of bifidobacteria are widely accepted, the diversity of bifidobacteria among the human intestinal microbiota is still poorly understood. We performed a census of bifidobacterial populations from human intestinal mucosal and fecal samples by plating them on selective medium, coupled with molecular analysis of selected rRNA gene sequences (16S rRNA gene and internally transcribed spacer [ITS] 16S-23S spacer sequences) of isolated colonies. A total of 900 isolates were collected, of which 704 were shown to belong to bifidobacteria. Analyses showed that the culturable bifidobacterial population from intestinal and fecal samples include six main phylogenetic taxa, i.e., Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Bifidobacterium adolescentis, Bifidobacterium pseudolongum, Bifidobacterium breve, and Bifidobacterium bifidum, and two species mostly detected in fecal samples, i.e., Bifidobacterium dentium and Bifidobacterium animalis subp. lactis. Analysis of bifidobacterial distribution based on age of the subject revealed that certain identified bifidobacterial species were exclusively present in the adult human gut microbiota whereas others were found to be widely distributed. We encountered significant intersubject variability and composition differences between fecal and mucosa-adherent bifidobacterial communities. In contrast, a modest diversification of bifidobacterial populations was noticed between different intestinal regions within the same individual (intrasubject variability). Notably, a small number of bifidobacterial isolates were shown to display a wide ecological distribution, thus suggesting that they possess a broad colonization capacity.

2005 ◽  
Vol 71 (5) ◽  
pp. 2318-2324 ◽  
Author(s):  
Monique Haarman ◽  
Jan Knol

ABSTRACT A healthy intestinal microbiota is considered to be important for priming of the infants' mucosal and systemic immunity. Breast-fed infants typically have an intestinal microbiota dominated by different Bifidobacterium species. It has been described that allergic infants have different levels of specific Bifidobacterium species than healthy infants. For the accurate quantification of Bifidobacterium adolescentis, Bifidobacterium angulatum, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium dentium, Bifidobacterium infantis, and Bifidobacterium longum in fecal samples, duplex 5′ nuclease assays were developed. The assays, targeting rRNA gene intergenic spacer regions, were validated and compared with conventional PCR and fluorescent in situ hybridization methods. The 5′ nuclease assays were subsequently used to determine the relative amounts of different Bifidobacterium species in fecal samples from infants receiving a standard formula or a standard formula supplemented with galacto- and fructo-oligosaccharides (OSF). A breast-fed group was studied in parallel as a reference. The results showed a significant increase in the total amount of fecal bifidobacteria (54.8% ± 9.8% to 73.4% ± 4.0%) in infants receiving the prebiotic formula (OSF), with a diversity of Bifidobacterium species similar to breast-fed infants. The intestinal microbiota of infants who received a standard formula seems to resemble a more adult-like distribution of bifidobacteria and contains relatively more B. catenulatum and B. adolescentis (2.71% ± 1.92% and 8.11% ± 4.12%, respectively, versus 0.15% ± 0.11% and 1.38% ± 0.98% for the OSF group). In conclusion, the specific prebiotic infant formula used induces a fecal microbiota that closely resembles the microbiota of breast-fed infants also at the level of the different Bifidobacterium species.


2008 ◽  
Vol 101 (4) ◽  
pp. 541-550 ◽  
Author(s):  
Carlett Ramirez-Farias ◽  
Kathleen Slezak ◽  
Zoë Fuller ◽  
Alan Duncan ◽  
Grietje Holtrop ◽  
...  

Prebiotics are food ingredients that improve health by modulating the colonic microbiota. The bifidogenic effect of the prebiotic inulin is well established; however, it remains unclear which species ofBifidobacteriumare stimulatedin vivoand whether bacterial groups other than lactic acid bacteria are affected by inulin consumption. Changes in the faecal microbiota composition were examined by real-time PCR in twelve human volunteers after ingestion of inulin (10 g/d) for a 16-d period in comparison with a control period without any supplement intake. The prevalence of most bacterial groups examined did not change after inulin intake, although the low G+C % Gram-positive speciesFaecalibacterium prausnitziiexhibited a significant increase (10·3 % for control periodv.14·5 % during inulin intake,P = 0·019). The composition of the genusBifidobacteriumwas studied in four of the volunteers by clone library analysis. Between three and fiveBifidobacteriumspp. were found in each volunteer.Bifidobacterium adolescentisandBifidobacterium longumwere present in all volunteers, andBifidobacterium pseudocatenulatum,Bifidobacterium animalis,Bifidobacterium bifidumandBifidobacterium dentiumwere also detected. Real-time PCR was employed to quantify the four most prevalentBifidobacteriumspp.,B. adolescentis,B. longum,B. pseudocatenulatumandB. bifidum, in ten volunteers carrying detectable levels of bifidobacteria.B. adolescentisshowed the strongest response to inulin consumption, increasing from 0·89 to 3·9 % of the total microbiota (P = 0·001).B. bifidumwas increased from 0·22 to 0·63 % (P < 0·001) for the five volunteers for whom this species was present.


2002 ◽  
Vol 68 (5) ◽  
pp. 2420-2427 ◽  
Author(s):  
Teresa Requena ◽  
Jeremy Burton ◽  
Takahiro Matsuki ◽  
Karen Munro ◽  
Mary Alice Simon ◽  
...  

ABSTRACT Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.


2002 ◽  
Vol 68 (12) ◽  
pp. 6429-6434 ◽  
Author(s):  
Marco Ventura ◽  
Ralf Zink

ABSTRACT Identification of Bifidobacterium lactis and Bifidobacterium animalis is problematic because of phenotypic and genetic homogeneities and has raised the question of whether they belong to one unique taxon. Analysis of the 16S-23S internally transcribed spacer region of B. lactis DSM10140T, B. animalis ATCC 25527T, and six potential B. lactis strains suggested two distinct clusters. Two specific 16S-23S spacer rRNA gene-targeted primers have been developed for specific detection of B. animalis. All of the molecular techniques used (B. lactis or B. animalis PCR primers, enterobacterial repetitive intergenic consensus PCR) demonstrated that B. lactis and B. animalis form two main groups and suggest a revision of the strains assigned to B. animalis. We propose that B. lactis should be separated from B. animalis at the subspecies level.


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Giulia Alessandri ◽  
Christian Milani ◽  
Leonardo Mancabelli ◽  
Giulia Longhi ◽  
Rosaria Anzalone ◽  
...  

ABSTRACT During the course of evolution, dogs and cats have been subjected to extensive domestication, becoming the principal companion animals for humans. For this reason, their health care, including their intestinal microbiota, is considered of considerable importance. However, the canine and feline gut microbiota still represent a largely unexplored research area. In the present work, we profiled the microbiota of 23 feline fecal samples by 16S rRNA gene and bifidobacterial internally transcribed spacer (ITS) approaches and compared this information with previously reported data from 138 canine fecal samples. The obtained data allowed the reconstruction of the core gut microbiota of the above-mentioned samples coupled with their classification into distinct community state types at both genus and species levels, identifying Bacteroides, Fusobacterium, and Prevotella 9 as the main bacterial components of the canine and feline gut microbiota. At the species level, the intestinal bifidobacterial gut communities of dogs and cats differed in terms of both species number and composition, as emphasized by a covariance analysis. Together, our findings show that the intestinal populations of cats and dogs are similar in terms of genus-level taxonomical composition, while at the bifidobacterial species level, clear differences were observed, indicative of host-specific colonization behavior by particular bifidobacterial taxa. IMPORTANCE Currently, domesticated dogs and cats are the most cherished companion animals for humans, and concerns about their health and well-being are therefore important. In this context, the gut microbiota plays a crucial role in maintaining and promoting host health. However, despite the social relevance of domesticated dogs and cats, their intestinal microbial communities are still far from being completely understood. In this study, the taxonomical composition of canine and feline gut microbiota was explored at genus and bifidobacterial species levels, allowing classification of these microbial populations into distinct gut community state types at either of the two investigated taxonomic levels. Furthermore, the reconstruction of core gut microbiota coupled with covariance network analysis based on bifidobacterial internally transcribed spacer (ITS) profiling revealed differences in the bifidobacterial compositions of canine and feline gut microbiota, suggesting that particular bifidobacterial species have developed a selective ability to colonize a specific host.


2013 ◽  
Vol 79 (6) ◽  
pp. 1843-1849 ◽  
Author(s):  
Hirotsugu Oda ◽  
Hiroyuki Wakabayashi ◽  
Koji Yamauchi ◽  
Takumi Sato ◽  
Jin-Zhong Xiao ◽  
...  

ABSTRACTLactoferrin is an iron-binding glycoprotein found in the milk of most mammals for which various biological functions have been reported, such as antimicrobial activity and bifidogenic activity. In this study, we compared the bifidogenic activity of bovine lactoferrin (bLF) and pepsin hydrolysate of bLF (bLFH), isolated bifidogenic peptide from bLFH, and investigated the bifidogenic spectra of bLF, bLFH, and its active peptide against 42 bifidobacterial strains comprising nine species. AgainstBifidobacterium breveATCC 15700T, minimal effective concentrations of bLF and bLFH were 300 and 10 μg/ml. AgainstBifidobacterium longumsubsp.infantisATCC 15697T, the minimal effective concentration of bLFH was 30 μg/ml, and bLF did not show bifidogenic activity within 300 μg/ml. As an active peptide, a heterodimer of A1-W16and L43-A48linked by a disulfide bond was isolated. Previously, this peptide was identified as having antibacterial activity. An amino acid mixture with the same composition as this peptide showed no bifidogenic activity. The strains of each species whose growth was highly promoted (>150%) by this peptide at 3.75 μM were as follows:B. breve(7 out of 7 strains [7/7]),B. longumsubsp.infantis(5/5),Bifidobacterium bifidum(2/5),B. longumsubsp.longum(1/3),Bifidobacterium adolescentis(3/6),Bifidobacterium catenulatum(1/4),Bifidobacterium pseudocatenulatum(0/4),Bifidobacterium dentium(0/5), andBifidobacterium angulatum(0/3). Growth of none of the strains was highly promoted by bLF at 3.75 μM. We demonstrated that bLFH showed stronger bifidogenic activity than natural bLF, especially against infant-representative species,B. breveandB. longumsubsp.infantis; furthermore, we isolated its active peptide. This is the first report about a bifidogenic peptide derived from bLF.


Author(s):  
Е.П. Каменская ◽  
М.В. Обрезкова ◽  
Е.Е. Базеева

Одним из приоритетных направлений пищевых технологий является создание продуктов, обладающих лечебно-профилактическим и функциональным действием, в частности кисломолочных симбиотических продуктов, сочетающих в себе сложные компоненты направленного действия – пробиотики и пребиотики. Цель работы – исследование взаимодействия штаммов различных видов бифидобактерий для получения на их основе консорциума с новыми биотехнологическими свойствами и создание синбиотического кисломолочного продукта с высоким титром бифидобактерий. Объектами исследований были выбраны штаммы Bifidobacterium bifidum 791, Bifidobacterium longum 379 М, Bifidobacterium adolescentis МС-42. При оценке качества в работе применяли общепринятые методы исследований. Установлено, что оптимальным соотношением штаммов B. bifidum 791, B. longum 379 М, B. аdolescentis МС-42 в составе комбинированной закваски является 1:1:2. Диско-диффузионным методом проведен анализ устойчивости консорциума к 23 антибиотикам разных поколений и спектров действий. Наибольшая устойчивость отмечена к бета-лактамным антибиотикам, бактерицидная активность которых обусловлена ингибированием синтеза клеточной стенки микроорганизмов. Также изучено влияние различных концентраций пребиотиков полисахаридной природы (пектина и инулина) на изменение количества жизнеспособных клеток бифидобактерий. Показано, что синбиотический кисломолочный продукт на основе подобранного консорциума бифидобактерий с внесением 2,5 % пектина может быть рекомендован для профилактики и коррекции нарушений дисбаланса кишечной микрофлоры, а также поддержания неспецифической резистентности организма. 


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262317
Author(s):  
Giovana S. Slanzon ◽  
Benjamin J. Ridenhour ◽  
Dale A. Moore ◽  
William M. Sischo ◽  
Lindsay M. Parrish ◽  
...  

Gastrointestinal disease (GI) is the most common illness in pre-weaned dairy calves. Studies have associated the fecal microbiome composition with health status, but it remains unclear how the microbiome changes across different levels of GI disease and breeds. Our objective was to associate the clinical symptoms of GI disease with the fecal microbiome. Fecal samples were collected from calves (n = 167) of different breeds (Holstein, Jersey, Jersey-cross and beef-cross) from 4–21 d of age. Daily clinical evaluations assessed health status. Calves with loose or watery feces were diagnosed with diarrhea and classified as bright-sick (BS) or depressed-sick (DS) according to behavior. Calves with normal or semiformed feces and no clinical illness were classified as healthy (H). One hundred and three fecal samples were obtained from consistently healthy calves and 64 samples were from calves with diarrhea (n = 39 BS; n = 25 DS). The V3-V4 region of 16S rRNA gene was sequenced and analyzed. Differences were identified by a linear-mixed effects model with a negative binomial error. DS and Jersey calves had a higher relative abundance of Streptococcus gallolyticus relative to H Holstein calves. In addition, DS calves had a lower relative abundance of Bifidobacterium longum and an enrichment of Escherichia coli. Species of the genus Lactobacillus, such as an unclassified Lactobacillus, Lactobacillus reuteri, and Lactobacillus salivarius were enriched in calves with GI disease. Moreover, we created a model to predict GI disease based on the fecal microbiome composition. The presence of Eggerthella lenta, Bifidobacterium longum, and Collinsella aerofaciens were associated with a healthy clinical outcome. Although lactobacilli are often associated with beneficial probiotic properties, the presence of E. coli and Lactobacillus species had the highest coefficients positively associated with GI disease prediction. Our results indicate that there are differences in the fecal microbiome of calves associated with GI disease severity and breed specificities.


2020 ◽  
Author(s):  
Gholamreza Hanifi ◽  
Hamid Tayebi Khosroshahi ◽  
Reza Shapouri ◽  
Mohammad Asgharzadeh ◽  
Hossein Samadi Kafil

Abstract Background: Bifidobacteriaceae family are belonged to the gut microbiota that could exhibit probiotic or health promoting effects on the host. Several studies suggested that gut microbiota are quantitative and qualitative altered in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). The present study was aimed to assess the members of Bifidobacteriaceae family in fecal samples of patients with CKD and ESRD in compared to non-CKD/ESRD patients to find any changes of their counts in these patients.Methods: Twenty fresh fecal samples of patients with CKD/ESRD and twenty from non-CKD/ESRD patients were included. The whole DNA of fecal samples were extracted and the gut microbiota composition was analyzed by next generation sequencing (NGS) method.Results: Total 651 strains were identified from 40 fecal samples, which 8 (1.23%) strains were identified as family Bifidobacteriaceae. The most abundance species in both control and disease group were Bifidobacterium adolescentis (2.10% ± 1.05% vs. 1.98% ± 1.53%, respectively) and the lowest abundance species in disease group was Bifidobacterium animalis subsp. lactis (0.0007% ± 0.0009%).Conclusions: There was no significant differentiation in the abundance of various species between disease group and control group (p<0.05). This study has confirmed that the members of Bifidobacteriaceae family are not alters in patients with CKD/ESRD.


Sign in / Sign up

Export Citation Format

Share Document