internally transcribed spacer
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 10)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 7 (10) ◽  
pp. 792
Author(s):  
Ning Jiang ◽  
Hermann Voglmayr ◽  
Dan-Ran Bian ◽  
Chun-Gen Piao ◽  
Sheng-Kun Wang ◽  
...  

Gnomoniopsis (Gnomoniaceae, Diaporthales) is a well-classified genus inhabiting leaves, branches and fruits of the hosts in three plant families, namely Fagaceae, Onagraceae and Rosaceae. In the present study, eighteen Gnomoniopsis isolates were obtained from diseased leaves of Fagaceae hosts collected from Fujian, Guangdong, Hainan, Henan, Jiangxi and Shaanxi provinces in China. Morphology from the cultures and phylogeny based on the 5.8S nuclear ribosomal DNA gene with the two flanking internally transcribed spacer (ITS) regions, the translation elongation factor 1-alpha (tef1) and the beta-tubulin (tub2) genes were employed to identify these isolates. As a result, seven species were revealed, viz. Gnomoniopsis castanopsidis, G. fagacearum, G. guangdongensis, G. hainanensis, G. rossmaniae and G. silvicola spp. nov, as well as a known species G. daii. In addition, G. daii was firstly reported on the host Quercus aliena.


2021 ◽  
Vol 9 (2) ◽  
pp. 302
Author(s):  
Claudia Colabella ◽  
Debora Casagrande Pierantoni ◽  
Laura Corte ◽  
Luca Roscini ◽  
Angela Conti ◽  
...  

Ribosomal RNA in fungi is encoded by a series of genes and spacers included in a large operon present in 100 tandem repeats, normally in a single locus. The multigene nature of this locus was somehow masked by Sanger sequencing, which produces a single sequence reporting the prevalent nucleotide of each site. The introduction of next generation sequencing led to deeper knowledge of the individual sequences (reads) and therefore of the variants between the same DNA sequences located in different tandem repeats. In this framework, NGS sequencing of the rDNA region was used to elucidate the extent of intra- and inter-genomic variation at both the strain and species level. Specifically, the use of an innovative NGS technique allowed the high-throughput high-depth sequencing of the ITS1-LSU D1/D2 amplicons of 252 strains belonging to four opportunistic yeast species of the genus Candida. Results showed the presence of a large extent of variability among strains and species. These variants were differently distributed throughout the analyzed regions with a higher concentration within the Internally Transcribed Spacer (ITS) region, suggesting that concerted evolution was not able to totally homogenize these sequences. Both the internal variability and the SNPs between strain can be used for a deep typing of the strains and to study their ecology.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 98
Author(s):  
Lidia Błaszczyk ◽  
Agnieszka Waśkiewicz ◽  
Karolina Gromadzka ◽  
Katarzyna Mikołajczak ◽  
Jerzy Chełkowski

The occurrence and diversity of Lecanicillium and Sarocladium in maize seeds and their role in this cereal are poorly understood. Therefore, the present study aimed to investigate Sarocladium and Lecanicillium communities found in endosphere of maize seeds collected from fields in Poland and their potential to form selected bioactive substances. The sequencing of the internally transcribed spacer regions 1 (ITS 1) and 2 (ITS2) and the large-subunit (LSU, 28S) of the rRNA gene cluster resulted in the identification of 17 Sarocladium zeae strains, three Sarocladium strictum and five Lecanicillium lecanii isolates. The assay on solid substrate showed that S. zeae and S. strictum can synthesize bassianolide, vertilecanin A, vertilecanin A methyl ester, 2-decenedioic acid and 10-hydroxy-8-decenoic acid. This is also the first study revealing the ability of these two species to produce beauvericin and enniatin B1, respectively. Moreover, for the first time in the present investigation, pyrrocidine A and/or B have been annotated as metabolites of S. strictum and L. lecanii. The production of toxic, insecticidal and antibacterial compounds in cultures of S. strictum, S. zeae and L. lecanii suggests the requirement to revise the approach to study the biological role of fungi inhabiting maize seeds.


Phytotaxa ◽  
2020 ◽  
Vol 475 (1) ◽  
pp. 29-42
Author(s):  
MASOUD SHEIBANI ◽  
SAMAD JAMALI

A new Geopora species (Pyronemataceae), Geopora ramila was described and illustrated from the soil, under or in the vicinity of Helianthemum ledifolium var. ledifolium annual plant in Fars province, Iran. Morphologically, G. ramila is similar to G. pinyonensis and G. arenicola but distinguished from both by a combination of morphological characters including, color and size of ascocarps, size and shape of ascospores, habit and associated host. The ribosomal DNA internally transcribed spacer (rDNA ITS) sequence of the new species (Acc. No. MT108930 to MT108934) showed 87.82% identity with G. pinyonensis in the BLAST search in GenBank. ITS-based phylogenetic analysis clearly supports G. ramila is a new and distinctive species lacking close relatives among described species of Geopora.


2020 ◽  
Vol 86 (12) ◽  
Author(s):  
Christian Milani ◽  
Federico Fontana ◽  
Giulia Alessandri ◽  
Leonardo Mancabelli ◽  
Gabriele Andrea Lugli ◽  
...  

ABSTRACT Among the bacterial genera that are used for cheese production, Lactobacillus is a key taxon of high industrial relevance that is commonly present in commercial starter cultures for dairy fermentations. Certain lactobacilli play a defining role in the development of the organoleptic features during the ripening stages of particular cheeses. We performed an in-depth 16S rRNA gene-based microbiota analysis coupled with internally transcribed spacer-mediated Lactobacillus compositional profiling of 21 common Italian cheeses produced from raw milk in order to evaluate the ecological distribution of lactobacilli associated with this food matrix. Statistical analysis of the collected data revealed the existence of putative Lactobacillus community state types (LCSTs), which consist of clusters of Lactobacillus (sub)species. Each LCST is dominated by one or two taxa that appear to represent keystone elements of an elaborate network of positive and negative interactions with minor components of the cheese microbiota. The results obtained in this study reveal the existence of peculiar cheese microbiota assemblies that represent intriguing targets for further functional studies aimed at dissecting the species-specific role of bacteria in cheese manufacturing. IMPORTANCE The microbiota is known to play a key role in the development of the organoleptic features of dairy products. Lactobacilli have been reported to represent one of the main components of the nonstarter bacterial population, i.e., bacteria that are not deliberately added to the milk, harbored by cheese, although the species-level composition of this microbial population has never been assessed in detail. In the present study, we applied a recently developed metagenomic approach that employs an internally transcribed spacer to profile the Lactobacillus population harbored by cheese produced from raw milk at the (sub)species level. The obtained data revealed the existence of particular Lactobacillus community state types consisting of clusters of Lactobacillus (sub)species that tend to cooccur in the screened cheeses. Moreover, analysis of covariances between members of this genus indicate that these taxa form an elaborate network of positive and negative interactions that define specific clusters of covariant lactobacilli.


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Giulia Alessandri ◽  
Christian Milani ◽  
Leonardo Mancabelli ◽  
Giulia Longhi ◽  
Rosaria Anzalone ◽  
...  

ABSTRACT During the course of evolution, dogs and cats have been subjected to extensive domestication, becoming the principal companion animals for humans. For this reason, their health care, including their intestinal microbiota, is considered of considerable importance. However, the canine and feline gut microbiota still represent a largely unexplored research area. In the present work, we profiled the microbiota of 23 feline fecal samples by 16S rRNA gene and bifidobacterial internally transcribed spacer (ITS) approaches and compared this information with previously reported data from 138 canine fecal samples. The obtained data allowed the reconstruction of the core gut microbiota of the above-mentioned samples coupled with their classification into distinct community state types at both genus and species levels, identifying Bacteroides, Fusobacterium, and Prevotella 9 as the main bacterial components of the canine and feline gut microbiota. At the species level, the intestinal bifidobacterial gut communities of dogs and cats differed in terms of both species number and composition, as emphasized by a covariance analysis. Together, our findings show that the intestinal populations of cats and dogs are similar in terms of genus-level taxonomical composition, while at the bifidobacterial species level, clear differences were observed, indicative of host-specific colonization behavior by particular bifidobacterial taxa. IMPORTANCE Currently, domesticated dogs and cats are the most cherished companion animals for humans, and concerns about their health and well-being are therefore important. In this context, the gut microbiota plays a crucial role in maintaining and promoting host health. However, despite the social relevance of domesticated dogs and cats, their intestinal microbial communities are still far from being completely understood. In this study, the taxonomical composition of canine and feline gut microbiota was explored at genus and bifidobacterial species levels, allowing classification of these microbial populations into distinct gut community state types at either of the two investigated taxonomic levels. Furthermore, the reconstruction of core gut microbiota coupled with covariance network analysis based on bifidobacterial internally transcribed spacer (ITS) profiling revealed differences in the bifidobacterial compositions of canine and feline gut microbiota, suggesting that particular bifidobacterial species have developed a selective ability to colonize a specific host.


Toxins ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 692
Author(s):  
Stephen Abiola Akinola ◽  
Collins Njie Ateba ◽  
Mulunda Mwanza

This study investigated the aflatoxin production potentials of selected fungi using a polyphasic approach. Internally transcribed spacer region of the fungi was amplified using the polymerase chain reaction. Forty-five Aspergillus strains were further assessed for aflatoxin production using the conventional methods such as growth on yeast extract sucrose, β-cyclodextrin neutral red desiccated coconut agar (β-CNRDCA); expression of the aflatoxin regulatory genes and the use of both thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). A large proportion (82.22%) of the isolates harbored the Nor-1 gene while 55.56%, 68.89%, and 80% possessed the ver-1, omt-A, and aflR genes, respectively. All 100% the isolates harbored the aflJ gene. Twenty-three isolates were positive for aflatoxin production based on the yeast extract sucrose medium (YES) test; ammonium vapor test (51%), yellow pigment production (75.5%), and β-CNRDCA tests; and blue/green fluorescence (57.7%). Based on TLC detection 42.2% produced aflatoxins while in the HPLC, total aflatoxin (AFTOT) production concentrations ranged from 6.77–71,453 µg/g. Detectable aflatoxin B1 (AFB1) concentrations obtained from the HPLC ranged between 3.76 and 70,288 µg/g; 6.77 and 242.50 µg/g for aflatoxin B2 (AFB2); 1.87 and 745.30 µg/g for aflatoxin G1 (AFG1); and 1.67 and 768.52 µg/g for aflatoxin G2 (AFG2). AFTOT contamination levels were higher than European Union tolerable limits (4 µg/kg). The regression coefficient was one (R2 = 1) while significant differences exist in the aflatoxin concentrations of Aspergillus (p ≤ 0.05). This study reports the potentials of Aspergillus oryzae previously known as a non-aflatoxin producer to produce AFG1, AFG2, AFB1, and AFB2 toxins. Aspergillus species in feedlots of animals reared for food are capable of producing aflatoxins which could pose hazards to health.


2019 ◽  
Vol 7 (12) ◽  
pp. 599 ◽  
Author(s):  
Christian Milani ◽  
Giulia Alessandri ◽  
Leonardo Mancabelli ◽  
Gabriele Andrea Lugli ◽  
Giulia Longhi ◽  
...  

Cheese microbiota is of high industrial relevance due to its crucial role in defining the organoleptic features of the final product. Nevertheless, the composition of and possible microbe–microbe interactions between these bacterial populations have never been assessed down to the species-level. For this reason, 16S rRNA gene microbial profiling combined with internally transcribed spacer (ITS)-mediated bifidobacterial profiling analyses of various cheeses produced with raw milk were performed in order to achieve an in-depth view of the bifidobacterial populations present in these microbially fermented food matrices. Moreover, statistical elaboration of the data collected in this study revealed the existence of community state types characterized by the dominance of specific microbial genera that appear to shape the overall cheese microbiota through an interactive network responsible for species-specific modulatory effects on the bifidobacterial population.


2019 ◽  
Vol 7 (9) ◽  
pp. 293 ◽  
Author(s):  
Walter Mancino ◽  
Sabrina Duranti ◽  
Leonardo Mancabelli ◽  
Giulia Longhi ◽  
Rosaria Anzalone ◽  
...  

Bifidobacteria commonly constitute the most abundant group of microorganisms in the healthy infant gut. Their intestinal establishment is believed to be maternally driven, and their acquisition has even been postulated to occur during pregnancy. In the current study, we evaluated bifidobacterial mother-to infant transmission events in a rat model by means of quantitative PCR (qPCR), as well as by Internally Transcribed Spacer (ITS) bifidobacterial profiling. The occurrence of strains supplied by mothers during pregnancy to their corresponding newborns was observed and identified by analysis immediately following C-section delivery. These findings provide intriguing support for the existence of an unknown route to facilitate bifidobacterial transfer during the very early stages of life.


2019 ◽  
Vol 317 (1) ◽  
pp. R83-R92 ◽  
Author(s):  
Björn Hansson ◽  
Luke A. Olsen ◽  
Justin X. Nicoll ◽  
Ferdinand von Walden ◽  
Michael Melin ◽  
...  

The current study examined the effects of a preceding bout of aerobic exercise (AE) on subsequent molecular signaling to resistance exercise (RE) of the elbow extensors. Eleven men performed unilateral elbow-extensor AE (~45 min at 70% peak workload) followed by unilateral RE (4 × 7 maximal repetitions) for both arms. Thus, one arm performed AE+RE interspersed with 15 min recovery, whereas the other arm conducted RE alone. Muscle biopsies were taken from the triceps brachii of each arm immediately before (PRE) and 15 min (POST1) and 3 h (POST2) after RE. Molecular markers involved in translation initiation, protein breakdown, mechanosignaling, and ribosome biogenesis were analyzed. Peak power during RE was reduced by 24% (±19%) when preceded by AE ( P < 0.05). Increases in PGC1a and MuRF1 expression were greater from PRE to POST2 in AE+RE compared with RE (18- vs. 3.5- and 4- vs. 2-fold, respectively, interaction, P < 0.05). Myostatin mRNA decreased in both arms ( P < 0.05). Phosphorylation of AMPK (Thr172) increased (2.5-fold), and 4E-BP1 (Thr37/46) decreased (2.0-fold), after AE (interactions, P < 0.05). p70 S6K, yes-associated protein, and c-Jun NH2-terminal kinase phosphorylation were unaltered, whereas focal adhesion kinase decreased ~1.5-fold, and β1-integrin increased ~1.3- to 1.5-fold, (time effect, P < 0.05). Abundance of 45S pre-ribosomal (r)RNA (internally transcribed spacer, ITS) decreased (~30%) after AE (interaction, P < 0.05), whereas CMYC mRNA was greater in AE+RE compared with RE (12-fold, P < 0.05). POLR1B abundance increased after both AE+RE and RE. All together, our results suggest that a single bout of AE leads to an immediate decrease in signaling for translation initiation and ribosome biogenesis. Yet, this did not translate into altered RE-induced signaling during the 3-h postexercise recovery period.


Sign in / Sign up

Export Citation Format

Share Document