scholarly journals Acute ethanol stress induces sumoylation of conserved chromatin structural proteins in Saccharomyces cerevisiae

2021 ◽  
pp. mbc.E20-11-0715
Author(s):  
Amanda I. Bradley ◽  
Nicole M. Marsh ◽  
Heather R. Borror ◽  
Kaitlyn E. Mostoller ◽  
Amber I. Gama ◽  
...  

Stress is ubiquitous to life and can irreparably damage essential biomolecules and organelles in cells. To survive, organisms must sense and adapt to stressful conditions. One highly conserved adaptive stress response is through the post-translational modification of proteins by the small ubiquitin-like modifier (SUMO). Here, we examine the effects of acute ethanol stress on protein sumoylation in the budding yeast Saccharomyces cerevisiae . We found that cells exhibit a transient sumoylation response after acute exposure to ≤ 7.5% ethanol. By contrast, the sumoylation response becomes chronic at 10% ethanol exposure. Mass spectrometry analyses identified 18 proteins that are sumoylated after acute ethanol exposure, with 15 known to associate with chromatin. Upon further analysis, we found that the chromatin structural proteins Smc5 and Smc6 undergo ethanol-induced sumoylation that depends on the activity of the E3 SUMO ligase Mms21. Using cell-cycle arrest assays, we observed that Smc5 and Smc6 ethanol-induced sumoylation occurs during G1 and G2/M phases but not S phase. Acute ethanol exposure also resulted in the formation of Rad52 foci at levels comparable to Rad52 foci formation after exposure to the DNA alkylating agent methyl methanesulfonate (MMS). MMS exposure is known to induce the intra-S phase DNA damage checkpoint via Rad53 phosphorylation, but ethanol exposure did not induce Rad53 phosphorylation. Ethanol abrogated the effect of MMS on Rad53 phosphorylation when added simultaneously. From these studies, we propose that acute ethanol exposure induces a change in chromatin leading to sumoylation of specific chromatin-structural proteins.

2020 ◽  
Author(s):  
Amanda I. Bradley ◽  
Nicole M. Marsh ◽  
Heather R. Borror ◽  
Kaitlyn E. Mostoller ◽  
Amber I. Gama ◽  
...  

AbstractStress is a ubiquitous part of life that disrupts cellular function and, if unresolved, can irreparably damage essential biomolecules and organelles. All organisms can experience stress in the form of unfavorable environmental conditions including exposure to extreme temperatures, hypoxia, reactive oxygen species, alcohol, or shifts in osmolarity. To survive, organisms must sense these changes then react and adapt. One highly conserved adaptive response to stress is through protein sumoylation, which is a post-translational modification by the small ubiquitin-like modifier (SUMO) protein. In this study, we examine the effects of acute ethanol stress on protein sumoylation in the budding yeast Saccharomyces cerevisiae. Although ethanol induces protein sumoylation, the targets and roles of sumoylation are largely unknown. Here, we found that cells exhibit a transient sumoylation response after exposure of cells to ≤ 7.5% volume/volume ethanol. The response peaks at 15 minutes and resolves by 60 minutes, indicating that cells have an adaptive response to low concentrations of ethanol. By contrast, the sumoylation response becomes chronic at 10% ethanol stress with no resolution by 60 minutes. To identify key targets of ethanol-induced sumoylation, we performed mass spectrometry analyses and identified 18 proteins with increased sumoylation after acute ethanol exposure, with 15 identified as known chromatin-associated proteins. Two of these proteins are the chromatin structural proteins Smc5 and Smc6, which are sumoylated by the activity of the SUMO ligase Mms21. Ethanol-induced Smc5/6 sumoylation occurs during G1 and G2M phases of the cell cycle but is abrogated during S phase despite the fact that other proteins are sumoylated during this phase. Acute ethanol exposure leads to formation of Rad52 foci indicating DNA damage similar to that observed with the addition of methyl methanesulfonate (MMS), which is an alkylating agent that damages DNA. Whereas MMS exposure induces the intra-S phase DNA damage checkpoint as observed by Rad53 phosphorylation, ethanol exposure does not induce the intra-S phase checkpoint and prevents Rad53 phosphorylation when added with MMS. From these results, we propose that ethanol induces a structural change in chromatin, possibly through DNA damage, and this causes sumoylation of conserved chromatin-associated proteins, including Smc5 and Smc6.


1980 ◽  
Vol 85 (1) ◽  
pp. 108-115 ◽  
Author(s):  
C J Rivin ◽  
W L Fangman

When the growth rate of the yeast Saccharomyces cerevisiae is limited with various nitrogen sources, the duration of the S phase is proportional to cell cycle length over a fourfold range of growth rates (C.J. Rivin and W. L. Fangman, 1980, J. Cell Biol. 85:96-107). Molecular parameters of the S phases of these cells were examined by DNA fiber autoradiography. Changes in replication fork rate account completely for the changes in S-phase duration. No changes in origin-to-origin distances were detected. In addition, it was found that while most adjacent replication origins are activated within a few minutes of each other, new activations occur throughout the S phase.


2011 ◽  
Vol 78 (2) ◽  
pp. 385-392 ◽  
Author(s):  
Chiemi Noguchi ◽  
Daisuke Watanabe ◽  
Yan Zhou ◽  
Takeshi Akao ◽  
Hitoshi Shimoi

ABSTRACTModern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p inSaccharomyces cerevisiaesake yeast. The HSE-lacZactivity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. SinceHSF1allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entirePPT1gene locus. We confirmed that the expression of laboratory yeast-derived functionalPPT1recovered the HSE-mediated stress response of sake yeast. In addition, deletion ofPPT1in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of thePPT1gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.


1990 ◽  
Vol 10 (12) ◽  
pp. 6482-6490
Author(s):  
F R Cross

Null mutations in three genes encoding cyclin-like proteins (CLN1, CLN2, and CLN3) in Saccharomyces cerevisiae cause cell cycle arrest in G1 (cln arrest). In cln1 cln2 cln3 strains bearing plasmids containing the CLN3 (also called WHI1 or DAF1) coding sequence under the transcriptional control of a galactose-regulated promoter, shift from galactose to glucose medium (shutting off synthesis of CLN3 mRNA) allowed completion of cell cycles in progress but caused arrest in the ensuing unbudded G1 phase. Cell growth was not inhibited in arrested cells. Cell division occurred in glucose medium even if cells were arrested in S phase during the initial 2 h of glucose treatment, suggesting that CLN function may not be required in the cell cycle after S phase. However, when the coding sequence of the hyperactive C-terminal truncation allele CLN3-2 (formerly DAF1-1) was placed under GAL control, cells went through multiple cycles before arresting after a shift from galactose to glucose. These results suggest that the C terminus of the wild-type protein confers functional instability. cln-arrested cells are mating competent. However, cln arrest is distinct from constitutive activation of the mating-factor signalling pathway because cln-arrested cells were dependent on the addition of pheromone both for mating and for induction of an alpha-factor-induced transcript, FUS1, and because MATa/MAT alpha (pheromone-nonresponsive) strains were capable of cln arrest in G1 (although a residual capacity for cell division before arrest was observed in MATa/MAT alpha strains). These results are consistent with a specific CLN requirement for START transit.


1994 ◽  
Vol 14 (5) ◽  
pp. 3524-3534
Author(s):  
I Collins ◽  
C S Newlon

Autonomously replicating sequence (ARS) elements are identified by their ability to promote high-frequency transformation and extrachromosomal replication of plasmids in the yeast Saccharomyces cerevisiae. Six of the 14 ARS elements present in a 200-kb region of Saccharomyces cerevisiae chromosome III are mitotic chromosomal replication origins. The unexpected observation that eight ARS elements do not function at detectable levels as chromosomal replication origins during mitotic growth suggested that these ARS elements may function as chromosomal origins during premeiotic S phase. Two-dimensional agarose gel electrophoresis was used to map premeiotic replication origins in a 100-kb segment of chromosome III between HML and CEN3. The pattern of origin usage in premeiotic S phase was identical to that in mitotic S phase, with the possible exception of ARS308, which is an inefficient mitotic origin associated with CEN3. CEN3 was found to replicate during premeiotic S phase, demonstrating that the failure of sister chromatids to disjoin during the meiosis I division is not due to unreplicated centromeres. No origins were found in the DNA fragments without ARS function. Thus, in both mitosis and meiosis, chromosomal replication origins are coincident with ARS elements but not all ARS elements have chromosomal origin function. The efficiency of origin use and the patterns of replication termination are similar in meiosis and in mitosis. DNA replication termination occurs over a broad distance between active origins.


1994 ◽  
Vol 14 (5) ◽  
pp. 3524-3534 ◽  
Author(s):  
I Collins ◽  
C S Newlon

Autonomously replicating sequence (ARS) elements are identified by their ability to promote high-frequency transformation and extrachromosomal replication of plasmids in the yeast Saccharomyces cerevisiae. Six of the 14 ARS elements present in a 200-kb region of Saccharomyces cerevisiae chromosome III are mitotic chromosomal replication origins. The unexpected observation that eight ARS elements do not function at detectable levels as chromosomal replication origins during mitotic growth suggested that these ARS elements may function as chromosomal origins during premeiotic S phase. Two-dimensional agarose gel electrophoresis was used to map premeiotic replication origins in a 100-kb segment of chromosome III between HML and CEN3. The pattern of origin usage in premeiotic S phase was identical to that in mitotic S phase, with the possible exception of ARS308, which is an inefficient mitotic origin associated with CEN3. CEN3 was found to replicate during premeiotic S phase, demonstrating that the failure of sister chromatids to disjoin during the meiosis I division is not due to unreplicated centromeres. No origins were found in the DNA fragments without ARS function. Thus, in both mitosis and meiosis, chromosomal replication origins are coincident with ARS elements but not all ARS elements have chromosomal origin function. The efficiency of origin use and the patterns of replication termination are similar in meiosis and in mitosis. DNA replication termination occurs over a broad distance between active origins.


2017 ◽  
Vol 474 (7) ◽  
pp. 1175-1193 ◽  
Author(s):  
Rachel Gergondey ◽  
Camille Garcia ◽  
Christophe H. Marchand ◽  
Stephane D. Lemaire ◽  
Jean-Michel Camadro ◽  
...  

The potential biological consequences of oxidative stress and changes in glutathione levels include the oxidation of susceptible protein thiols and reversible covalent binding of glutathione to the –SH groups of proteins by S-glutathionylation. Mitochondria are central to the response to oxidative stress and redox signaling. It is therefore crucial to explore the adaptive response to changes in thiol-dependent redox status in these organelles. We optimized the purification protocol of glutathionylated proteins in the yeast Saccharomyces cerevisiae and present a detailed proteomic analysis of the targets of protein glutathionylation in cells undergoing constitutive metabolism and after exposure to various stress conditions. This work establishes the physiological importance of the glutathionylation process in S. cerevisiae under basal conditions and provides evidence for an atypical and unexpected cellular distribution of the process between the cytosol and mitochondria. In addition, our data indicate that each oxidative condition (diamide, GSSG, H2O2, or the presence of iron) elicits an adaptive metabolic response affecting specific mitochondrial metabolic pathways, mainly involved in the energetic maintenance of the cells. The correlation of protein modifications with intracellular glutathione levels suggests that protein deglutathionylation may play a role in protecting mitochondria from oxidative stress. This work provides further insights into the diversity of proteins undergoing glutathionylation and the role of this post-translational modification as a regulatory process in the adaptive response of the cell.


Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1527-1538
Author(s):  
Eric M Muller ◽  
Emily G Locke ◽  
Kyle W Cunningham

Abstract The budding yeast Saccharomyces cerevisiae generates calcium signals during the response to mating pheromones that promote survival of unmated cells. A Ca2+ channel composed of Cch1p and Mid1p was previously shown to be necessary for the production of these calcium signals. However, we find that the Cch1p-Mid1p high-affinity Ca2+ influx system (HACS) contributes very little to signaling or survival after treatment with α-factor in rich media. HACS activity was much greater after calcineurin inactivation or inhibition, suggesting the Cch1p-Mid1p Ca2+ channel is subject to direct or indirect regulation by calcineurin. Instead a distinct low-affinity Ca2+ influx system (LACS) was stimulated by pheromone signaling in rich medium. LACS activity was insensitive to calcineurin activity, independent of Cch1p and Mid1p, and sufficient to elevate cytosolic free Ca2+ concentrations ([Ca2+]c) in spite of its 16-fold lower affinity for Ca2+. Overexpression of Ste12p or constitutive activation of this transcription factor in dig1 dig2 double mutants had no effect on LACS activity but stimulated HACS activity when calcineurin was also inactivated. Ste12p activation had no effect on Cch1p or Mid1p abundance, suggesting the involvement of another target of Ste12p in HACS stimulation. LACS activation required treatment with mating pheromone even in dig1 dig2 double mutants and also required FAR1, SPA2, and BNI1, which are necessary for proper cell cycle arrest and polarized morphogenesis. These results show that distinct branches of the pheromone-signaling pathway independently regulate HACS and LACS activities, either of which can promote survival during long-term responses.


2015 ◽  
Vol 26 (12) ◽  
pp. 2205-2216 ◽  
Author(s):  
Denis Ostapenko ◽  
Janet L. Burton ◽  
Mark J. Solomon

The anaphase-promoting complex in partnership with its activator, Cdh1, is an E3 ubiquitin ligase responsible for targeting cell cycle proteins during G1 phase. In the budding yeast Saccharomyces cerevisiae, Cdh1 associates with the deubiquitinating enzyme Ubp15, but the significance of this interaction is unclear. To better understand the physiological role(s) of Ubp15, we examined cell cycle phenotypes of cells lacking Ubp15. We found that ubp15∆ cells exhibited delayed progression from G1 into S phase and increased sensitivity to the DNA synthesis inhibitor hydroxyurea. Both phenotypes of ubp15∆ cells were rescued by additional copies of the S-phase cyclin gene CLB5. Clb5 is an unstable protein targeted for proteasome-mediated degradation by several pathways. We found that during G1 phase, the APCCdh1-mediated degradation of Clb5 was accelerated in ubp15∆ cells. Ubp15 interacted with Clb5 independent of Cdh1 and deubiquitinated Clb5 in a reconstituted system. Thus deubiquitination by Ubp15 counteracts APC activity toward cyclin Clb5 to allow Clb5 accumulation and a timely entry into S phase.


Sign in / Sign up

Export Citation Format

Share Document