Effects of Bacterial Host and Dichloromethane Dehalogenase on the Competitiveness of Methylotrophic Bacteria Growing with Dichloromethane

1998 ◽  
Vol 64 (4) ◽  
pp. 1194-1202 ◽  
Author(s):  
Daniel Gisi ◽  
Laurent Willi ◽  
Hubert Traber ◽  
Thomas Leisinger ◽  
Stéphane Vuilleumier

ABSTRACT Methylobacterium sp. strain DM4 andMethylophilus sp. strain DM11 can grow with dichloromethane (DCM) as the sole source of carbon and energy by virtue of homologous glutathione-dependent DCM dehalogenases with markedly different kinetic properties (the k cat values of the enzymes of these strains are 0.6 and 3.3 s−1, respectively, and theKm values are 9 and 59 μM, respectively). These strains, as well as transconjugant bacteria expressing the DCM dehalogenase gene (dcmA) from DM11 or DM4 on a broad-host-range plasmid in the background of dcmA mutant DM4-2cr, were investigated by growing them under growth-limiting conditions and in the presence of an excess of DCM. The maximal growth rates and maximal levels of dehalogenase for chemostat-adapted bacteria were higher than the maximal growth rates and maximal levels of dehalogenase for batch-grown bacteria. The substrate saturation constant of strain DM4 was much lower than theKm of its associated dehalogenase, suggesting that this strain is adapted to scavenge low concentrations of DCM. Strains and transconjugants expressing the DCM dehalogenase from strain DM11, on the other hand, had higher growth rates than bacteria expressing the homologous dehalogenase from strain DM4. Competition experiments performed with pairs of DCM-degrading strains revealed that a strain expressing the dehalogenase from DM4 had a selective advantage in continuous culture under substrate-limiting conditions, while strains expressing the DM11 dehalogenase were superior in batch culture when there was an excess of substrate. Only DCM-degrading bacteria with a dcmA gene similar to that from strain DM4, however, were obtained in batch enrichment cultures prepared with activated sludge from sewage treatment plants.

2013 ◽  
Vol 79 (7) ◽  
pp. 2164-2171 ◽  
Author(s):  
Jiguo Qiu ◽  
Yun Ma ◽  
Jing Zhang ◽  
Yuezhong Wen ◽  
Weiping Liu

ABSTRACTPseudomonassp. strain HZN6 utilizes nicotine as its sole source of carbon, nitrogen, and energy. However, its catabolic mechanism has not been elucidated. In this study, self-formed adaptor PCR was performed to amplify the upstream sequence of the pseudooxynicotine amine oxidase gene. A 1,437-bp open reading frame (designatednox) was found to encode a nicotine oxidase (NOX) that shows 30% amino acid sequence identity with 6-hydroxy-l-nicotine oxidase fromArthrobacter nicotinovorans. Thenoxgene was cloned into a broad-host-range cloning vector and transferred into the non-nicotine-degrading bacteriaEscherichia coliDH5α (DH-nox) andPseudomonas putidaKT2440 (KT-nox). The transconjugant KT-nox obtained nicotine degradation ability and yielded an equimolar amount of pseudooxynicotine, while DH-nox did not. Reverse transcription-PCR showed that thenoxgene is expressed in both DH5α and KT2440, suggesting that additional factors required for nicotine degradation are present in aPseudomonasstrain(s), but not inE. coli. The mutant of strain HZN6 withnoxdisrupted lost the ability to degrade nicotine, but not pseudooxynicotine. These results suggested that thenoxgene is responsible for the first step of nicotine degradation. The (RS)-nicotine degradation results showed that the two enantiomers were degraded at approximately the same rate, indicating that NOX does not show chiral selectivity. Site-directed mutagenesis revealed that both the conserved flavin adenine dinucleotide (FAD)-binding GXGXXG motif and His456 are essential for nicotine degradation activity.


1997 ◽  
Vol 43 (2) ◽  
pp. 197-201 ◽  
Author(s):  
Christian G. Gliesche

An efficient system for electroporation of the methylotrophic bacteria Hyphomicrobium facilis, Hyphomicrobium denitrificans, Methylobacillus glycogenes, Methylobacterium extorquens, and Methylophilus methylotrophus is described. It could be demonstrated that vectors based on the broad-host-range plasmid pBBR1 could be transferred into these strains. Plasmid pBBR1KAN (3.9 kb), a kanamycin-resistant derivative of pBBR1, was suitable for transformation experiments in these methylotrophic bacteria. Transformation efficiencies up to 104transformants/μg plasmid pBBR1KAN were obtained. The broad-host-range plasmid pLA2917 was transferred into Hyphomicrobium species by a triparental mating. However, this plasmid was integrated into the genome of Hyphomicrobium spp. Plasmids pLA2917, pKT231, pSUP2021, pRZ705, and phage DNA could not be transferred in Hyphomicrobium spp. by electroporation under the conditions applied.Key words: Hyphomicrobium, transformation, methylotrophic bacteria, plasmid pBBR1, broad-host-range vector.


2021 ◽  
Vol 9 (4) ◽  
pp. 809
Author(s):  
Hiroya Yurimoto ◽  
Kosuke Shiraishi ◽  
Yasuyoshi Sakai

Methanol is abundant in the phyllosphere, the surface of the above-ground parts of plants, and its concentration oscillates diurnally. The phyllosphere is one of the major habitats for a group of microorganisms, the so-called methylotrophs, that utilize one-carbon (C1) compounds, such as methanol and methane, as their sole source of carbon and energy. Among phyllospheric microorganisms, methanol-utilizing methylotrophic bacteria, known as pink-pigmented facultative methylotrophs (PPFMs), are the dominant colonizers of the phyllosphere, and some of them have recently been shown to have the ability to promote plant growth and increase crop yield. In addition to PPFMs, methanol-utilizing yeasts can proliferate and survive in the phyllosphere by using unique molecular and cellular mechanisms to adapt to the stressful phyllosphere environment. This review describes our current understanding of the physiology of methylotrophic bacteria and yeasts living in the phyllosphere where they are exposed to diurnal cycles of environmental conditions.


1981 ◽  
Vol 26 (3) ◽  
pp. 509-515 ◽  
Author(s):  
V. M. Čadež ◽  
S. Vuković ◽  
V. V. Frolov ◽  
A. Yu. Kyrie

Generation of electromagnetic surface waves by relativistic inhomogeneous particle flows is investigated for plane and cylindrical geometries. The basic excitation mechanisms are shown to be the induced anomalous Doppler effect and the hydrodynamic Čerenkov effect. The relevant maximal growth rates may differ significantly from those derived for monoenergetic beams.


2014 ◽  
Vol 44 (2) ◽  
pp. 445-463 ◽  
Author(s):  
Sören Thomsen ◽  
Carsten Eden ◽  
Lars Czeschel

Abstract Mooring observations and model simulations point to an instability of the Labrador Current (LC) during winter, with enhanced eddy kinetic energy (EKE) at periods between 2 and 5 days and much less EKE during other seasons. Linear stability analysis using vertical shear and stratification from the model reveals three dominant modes of instability in the LC: 1) a balanced interior mode with along-flow wavelengths of about 30–45 km, phase velocities of 0.3 m s−1, maximal growth rates of 1 day−1, and surface-intensified but deep-reaching amplitudes; 2) a balanced shallow mode with along-flow wavelengths of about 0.3–1.5 km, phase velocities of 0.55 m s−1, about 3 times larger growth rates, but amplitudes confined to the mixed layer (ML); and 3) an unbalanced symmetric mode with the largest growth rates, vanishing phase speeds, and along-flow structure, and very small cross-flow wavelengths, also confined to the ML. Both balanced modes are akin to baroclinic instability but operate at moderate-to-small Richardson numbers Ri with much larger growth rates as for the quasigeostrophic limit of Ri ≫ 1. The interior mode is found to be responsible for the instability of the LC during winter. Weak stratification and enhanced vertical shear due to local buoyancy loss and the advection of convective water masses from the interior result in small Ri within the LC and up to 3 times larger growth rates of the interior mode in March compared to summer and fall conditions. Both the shallow and the symmetric modes are not resolved by the model, but it is suggested that they might also play an important role for the instability in the LC and for lateral mixing.


1985 ◽  
pp. 173-188 ◽  
Author(s):  
Richard J. Meyer ◽  
Lung-Shen Lin ◽  
Kyunghoon Kim ◽  
Michael A. Brasch

Sign in / Sign up

Export Citation Format

Share Document