scholarly journals Stability Analysis of the Labrador Current

2014 ◽  
Vol 44 (2) ◽  
pp. 445-463 ◽  
Author(s):  
Sören Thomsen ◽  
Carsten Eden ◽  
Lars Czeschel

Abstract Mooring observations and model simulations point to an instability of the Labrador Current (LC) during winter, with enhanced eddy kinetic energy (EKE) at periods between 2 and 5 days and much less EKE during other seasons. Linear stability analysis using vertical shear and stratification from the model reveals three dominant modes of instability in the LC: 1) a balanced interior mode with along-flow wavelengths of about 30–45 km, phase velocities of 0.3 m s−1, maximal growth rates of 1 day−1, and surface-intensified but deep-reaching amplitudes; 2) a balanced shallow mode with along-flow wavelengths of about 0.3–1.5 km, phase velocities of 0.55 m s−1, about 3 times larger growth rates, but amplitudes confined to the mixed layer (ML); and 3) an unbalanced symmetric mode with the largest growth rates, vanishing phase speeds, and along-flow structure, and very small cross-flow wavelengths, also confined to the ML. Both balanced modes are akin to baroclinic instability but operate at moderate-to-small Richardson numbers Ri with much larger growth rates as for the quasigeostrophic limit of Ri ≫ 1. The interior mode is found to be responsible for the instability of the LC during winter. Weak stratification and enhanced vertical shear due to local buoyancy loss and the advection of convective water masses from the interior result in small Ri within the LC and up to 3 times larger growth rates of the interior mode in March compared to summer and fall conditions. Both the shallow and the symmetric modes are not resolved by the model, but it is suggested that they might also play an important role for the instability in the LC and for lateral mixing.

2005 ◽  
Vol 73 (3) ◽  
pp. 449-460 ◽  
Author(s):  
Aziz Salhi ◽  
Claude Cambon

The essentials of rapid distortion theory (RDT) are briefly recalled for homogeneous turbulence subjected to rotational mean flows, including its linkage to stability analysis. The latter “linkage” is of particular importance from our viewpoint, since it also attracted the attention of Charles Speziale, resulting in at least two papers [Speziale, C. G., Abid, R., and Blaisdell, G. A., 1996, “On the Consistency of Reynolds Stress Turbulence Closures With Hydrodynamic Stability Theory,” Phys. Fluids, 8, pp. 781–788 and Salhi, A., Cambon, C., and Speziale, C. G., 1997, “Linear Stability Analysis of Plane Quadratic Flows in a Rotating Frame,” Phys. Fluids, 9(8), pp. 2300–2309] with particular emphasis on rotating flows. New analytical solutions and related RDT results are presented for shear flows including buoyancy forces, with system rotation or mean density stratification. Finally, combining shear, rotation and stratification, RDT is shown to be pertinent to revisiting the baroclinic instability. This instability results from the tilting of mean isopycnal surfaces under combined effects of vertical shear and system rotation, in a vertically (stably) stratified medium rotating around the vertical direction. In addition, the challenge of reproducing RDT dynamics in single-point closure models is briefly discussed, from the viewpoint of structure-based modeling [Cambon C., Jacquin, L., and Lubrano, J.-L., 1992, “Towards a New Reynolds Stress Model for Rotating Turbulent Flows,” Phys. Fluids A, 4, pp. 812–824 and Kassinos, S. C., Reynolds, W. C., and Rogers, M. M., 2000, “One-Point Turbulence Structure Tensors,” J. Fluid Mech., 428, pp. 213–248.


1981 ◽  
Vol 26 (3) ◽  
pp. 509-515 ◽  
Author(s):  
V. M. Čadež ◽  
S. Vuković ◽  
V. V. Frolov ◽  
A. Yu. Kyrie

Generation of electromagnetic surface waves by relativistic inhomogeneous particle flows is investigated for plane and cylindrical geometries. The basic excitation mechanisms are shown to be the induced anomalous Doppler effect and the hydrodynamic Čerenkov effect. The relevant maximal growth rates may differ significantly from those derived for monoenergetic beams.


2014 ◽  
Vol 44 (2) ◽  
pp. 714-732 ◽  
Author(s):  
F. J. Poulin ◽  
A. Stegner ◽  
M. Hernández-Arencibia ◽  
A. Marrero-Díaz ◽  
P. Sangrà

Abstract In situ measurements obtained during the 2010 COUPLING cruise were analyzed in order to fully characterize the velocity structure of the coastal Bransfield Current. An idealized two-layer shallow-water model was used to investigate the various instability processes of the realistic current along the coastal shelf. Particularly studied is how the topographic parameter To (ratio between the shelf slope and the isopycnal slope of the surface current) impacts the growth and the wavelength of the unstable perturbations. For small bottom slopes, when the evolution of the coastal current is controlled by the baroclinic instability, the increase of the topographic parameter To yields a selection of smaller unstable wavelengths. The growth rates increase with small values of To. For larger values of To (To ≳ 10, which is relevant for the coastal Bransfield Current), the baroclinic instability is strongly dampened and the horizontal shear instability becomes the dominant one. In this steep shelf regime, the unstable growth rate and the wavelength selection of the baroclinic coastal current remains almost constant and weakly affected by the amplitude of the bottom velocity or the exact value of the shelf slope. Hence, the linear stability analysis of an idealized Bransfield Current predicts a typical growth time of 7.7 days and an alongshore scale of 47 km all along the South Shetland Island shelf. The fact that these large growth times are identical to the typical transit time of water parcels along the shelf may explain why the current does not exhibit any unstable meanders.


2002 ◽  
Vol 20 (5) ◽  
pp. 729-740 ◽  
Author(s):  
S. Masina

Abstract. Several numerical experiments are performed in a nonlinear, multi-level periodic channel model centered on the equator with different zonally uniform background flows which resemble the South Equatorial Current (SEC). Analysis of the simulations focuses on identifying stability criteria for a continuously stratified fluid near the equator. A 90 m deep frontal layer is required to destabilize a zonally uniform, 10° wide, westward surface jet that is symmetric about the equator and has a maximum velocity of 100 cm/s. In this case, the phase velocity of the excited unstable waves is very similar to the phase speed of the Tropical Instability Waves (TIWs) observed in the eastern Pacific Ocean. The vertical scale of the baroclinic waves corresponds to the frontal layer depth and their phase speed increases as the vertical shear of the jet is doubled. When the westward surface parabolic jet is made asymmetric about the equator, in order to simulate more realistically the structure of the SEC in the eastern Pacific, two kinds of instability are generated. The oscillations that grow north of the equator have a baroclinic nature, while those generated on and very close to the equator have a barotropic nature.  This study shows that the potential for baroclinic instability in the equatorial region can be as large as at mid-latitudes, if the tendency of isotherms to have a smaller slope for a given zonal velocity, when the Coriolis parameter vanishes, is compensated for by the wind effect.Key words. Oceanography: general (equatorial oceanography; numerical modeling) – Oceanography: physics (fronts and jets)


2010 ◽  
Vol 40 (1) ◽  
pp. 213-225 ◽  
Author(s):  
Bo Qiu ◽  
Shuiming Chen

Abstract Interannual changes in the mesoscale eddy field along the Subtropical Countercurrent (STCC) band of 18°–25°N in the western North Pacific Ocean are investigated with 16 yr of satellite altimeter data. Enhanced eddy activities were observed in 1996–98 and 2003–08, whereas the eddy activities were below average in 1993–95 and 1999–2002. Analysis of repeat hydrographic data along 137°E reveals that the vertical shear between the surface eastward-flowing STCC and the subsurface westward-flowing North Equatorial Current (NEC) was larger in the eddy-rich years than in the eddy-weak years. By adopting a 2½-layer reduced-gravity model, it is shown that the increased eddy kinetic energy level in 1996–98 and 2003–08 is because of enhanced baroclinic instability resulting from the larger vertical shear in the STCC–NEC’s background flow. The cause for the STCC–NEC’s interannually varying vertical shear can be sought in the forcing by surface Ekman temperature gradient convergence within the STCC band. Rather than El Niño–Southern Oscillation signals as previously hypothesized, interannual changes in this Ekman forcing field, and hence the STCC–NEC’s vertical shear, are more related to the negative western Pacific index signals.


1981 ◽  
Vol 15 (4) ◽  
pp. 327-331 ◽  
Author(s):  
P. R. Boyle

Healthy, undamaged specimens survive well in recirculating aquarium seawater of about 36 parts per thousand salinity and pH 7·4, having 50 mg.l-1 nitrogen as nitrate, < 0·1 mg.l-1 nitrogen as nitrite, and < 0·1 mg.l-1 nitrogen as ammonia, and a mean annual temperature of 14-15°C, about 5°C above ambient. For maximal growth rates, the gross wet weight of live crabs required as food ranges up to 10% of the weight of the octopus. Weight-specific growth rates fall from 3-4% day-1 at 100-200 g bodyweight, to 1-1°5% day-1 at >500 g bodyweight. Survival of healthy, wild-caught animals, commonly 4-6 months and up to 8 months, is apparently limited more by endogenous factors concerned with sexual maturation and lifespan than by aquarium conditions. Eggs have been laid but it has not yet been possible to hatch and rear them.


1998 ◽  
Vol 368 ◽  
pp. 339-357 ◽  
Author(s):  
MARKUS HÖGBERG ◽  
DAN HENNINGSON

Linear eigenvalue calculations and spatial direct numerical simulations (DNS) of disturbance growth in Falkner–Skan–Cooke (FSC) boundary layers have been performed. The growth rates of the small-amplitude disturbances obtained from the DNS calculations show differences compared to linear local theory, i.e. non-parallel effects are present. With higher amplitude initial disturbances in the DNS calculations, saturated cross-flow vortices are obtained. In these vortices strong shear layers appear. When a small random disturbance is added to a saturated cross-flow vortex, a low-frequency mode is found located at the bottom shear layer of the cross-flow vortex and a high-frequency secondary instability is found at the upper shear layer of the cross-flow vortex. The growth rates of the secondary instabilities are found from detailed analysis of simulations of single-frequency disturbances. The low-frequency disturbance is amplified throughout the domain, but with a lower growth rate than the high-frequency disturbance, which is amplified only once the cross-flow vortices have started to saturate. The high-frequency disturbance has a growth rate that is considerably higher than the growth rates for the primary instabilities, and it is conjectured that the onset of the high-frequency instability is well correlated with the start of transition.


2015 ◽  
Vol 140 ◽  
pp. 245-251 ◽  
Author(s):  
Erik Sette ◽  
David Pallarès ◽  
Filip Johnsson

1990 ◽  
Vol 17 (4) ◽  
pp. 451 ◽  
Author(s):  
FW Smith ◽  
WA Jackson ◽  
PJV Berg

Partitioning and net transfer of phosphorus between shoots and roots in the tropical forage legume Stylosanthes hamata cv. Verano during the development of phosphorus deficiency has been studied. Plants were stressed by either growing them in dilute flowing culture on continuously maintained external phosphorus concentrations that were inadequate for maximal growth, or by transferring plants of varying phosphorus status to phosphorus-free media. An external phosphorus concentration of 1 �M P was found to be just adequate for maximal growth of S. hamata. Phosphorus stress caused rapid and substantial increases in root weight percentage. It is proposed that this represents an important adaptive mechanism for maximising phosphorus uptake by S. hamata growing in phosphorus-deficient soils. Roots contained the minimum proportion of the plant's phosphorus content when root phosphorus concentrations were 8-10 �mol P g-1 root, and shoot phosphorus concentrations were 16-20 �mol P g-1 shoot. When tissue concentrations were less than these values, plants suffered from phosphorus stress and phosphorus was either preferentially retained by the roots or rapidly transferred from shoots to roots, reducing the growth rates of shoots, but permitting root growth to continue. Upon reducing the external phosphorus supply to plants whose root phosphorus concentrations exceeded 8 to 10 �mol P g-1 root, excess phosphorus was rapidly transferred from the root to the shoot to maintain shoot growth rates. The mobility of phospborus within the plant, and the apparent lack of any delay in transferring phosphorus from shoots to roots as phosphorus stress developed, represent another adaptive feature that is likely to be important to the successful growth of S. hamata in low phosphorus soils. When the phosphorus supply was limited, the plant's resources were directed toward maintaining root growth. Even extremely phosphorus deficient plants, in which shoot growth had ceased, maintained linear rates of root growth. These linear rates were related to the total phosphorus content of the plant. In the latter stages of phosphorus deprivation, linear rates of root growth were maintained by remobilisation of phosphorus from the older parts of the root system to sustain the phosphorus supply to the root meristems.


2020 ◽  
Vol 6 (31) ◽  
pp. eaba7880 ◽  
Author(s):  
Zhao Jing ◽  
Shengpeng Wang ◽  
Lixin Wu ◽  
Ping Chang ◽  
Qiuying Zhang ◽  
...  

Oceanic fronts associated with strong western boundary current extensions vent a vast amount of heat into the atmosphere, anchoring mid-latitude storm tracks and facilitating ocean carbon sequestration. However, it remains unclear how the surface heat reservoir is replenished by ocean processes to sustain the atmospheric heat uptake. Using high-resolution climate simulations, we find that the vertical heat transport by ocean mesoscale eddies acts as an important heat supplier to the surface ocean in frontal regions. This vertical eddy heat transport is not accounted for by the prevailing inviscid and adiabatic ocean dynamical theories such as baroclinic instability and frontogenesis but is tightly related to the atmospheric forcing. Strong surface cooling associated with intense winds in winter promotes turbulent mixing in the mixed layer, destructing the vertical shear of mesoscale eddies. The restoring of vertical shear induces an ageostrophic secondary circulation transporting heat from the subsurface to surface ocean.


Sign in / Sign up

Export Citation Format

Share Document