scholarly journals Alterations in the Proteome of the Euprymna scolopes Light Organ in Response to Symbiotic Vibrio fischeri

2000 ◽  
Vol 66 (9) ◽  
pp. 4091-4097 ◽  
Author(s):  
Judith Doino Lemus ◽  
Margaret J. McFall-Ngai

ABSTRACT During the onset of the cooperative association between the Hawaiian sepiolid squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri, the anatomy and morphology of the host's symbiotic organ undergo dramatic changes that require interaction with the bacteria. This morphogenetic process involves an array of tissues, including those in direct contact with, as well as those remote from, the symbiotic bacteria. The bacteria induce the developmental program soon after colonization of the organ, although complete morphogenesis requires 96 h. In this study, to determine critical time points, we examined the biochemistry underlying bacterium-induced host development using two-dimensional polyacrylamide gel electrophoresis. Specifically, V. fischeri-induced changes in the soluble proteome of the symbiotic organ during the first 96 h of symbiosis were identified by comparing the protein profiles of symbiont-colonized and uncolonized organs. Both symbiosis-related changes and age-related changes were analyzed to determine what proportion of the differences in the proteomes was the result of specific responses to interaction with bacteria. Although no differences were detected over the first 24 h, numerous symbiosis-related changes became apparent at 48 and 96 h and were more abundant than age-related changes. In addition, many age-related protein changes occurred 48 h sooner in symbiotic animals, suggesting that the interaction of squid tissue with V. fischeri cells accelerates certain developmental processes of the symbiotic organ. These data suggest that V. fischeri-induced modifications in host tissues that occur in the first 24 h of the symbiosis are independent of marked alterations in the patterns of abundant proteins but that the full 4-day morphogenetic program requires significant alteration of the host soluble proteome.

2004 ◽  
Vol 70 (3) ◽  
pp. 1434-1441 ◽  
Author(s):  
Jennifer R. Kimbell ◽  
Margaret J. McFall-Ngai

ABSTRACT The influence of bacteria on the cytoskeleton of animal cells has been studied extensively only in pathogenic associations. We characterized changes in host cytoskeletal actin induced by the bacterial partner during the onset of a cooperative animal-bacteria association using the squid-vibrio model. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis revealed that Vibrio fischeri induced a dramatic increase in actin protein abundance in the bacteria-associated host tissues during the onset of the symbiosis. Immunocytochemistry revealed that this change in actin abundance correlated with a two- to threefold increase in actin in the apical cell surface of the epithelium-lined ducts, the route of entry of symbionts into host tissues. Real-time reverse transcriptase PCR and in situ hybridization did not detect corresponding changes in actin mRNA. Temporally correlated with the bacteria-induced changes in actin levels was a two- to threefold decrease in duct circumference, a 20% loss in the average number of cells interfacing with the duct lumina, and dramatic changes in duct cell shape. When considered with previous studies of the biomechanical and biochemical characteristics of the duct, these findings suggest that the bacterial symbionts, upon colonizing the host organ, induce modifications that physically and chemically limit the opportunity for subsequent colonizers to pass through the ducts. Continued study of the squid-vibrio system will allow further comparisons of the mechanisms by which pathogenic and cooperative bacteria influence cytoskeleton dynamics in host cells.


2020 ◽  
Author(s):  
Ashani Weeraratna ◽  
Mitchell Fane ◽  
Stephen Douglass ◽  
Gretchen Alicea ◽  
Marie Webster ◽  
...  

Abstract Dormant tumor cells escape the primary site, do not grow out into macroscopic tumors in the distal site, but maintain enough plasticity to reactivate and form overt metastatic lesions, sometimes taking several decades. Despite its importance in metastasis and residual disease, few studies have been able to successfully model or characterize dormancy within melanoma. Here, we show that age-related changes in the lung microenvironment facilitate a permissive niche for efficient outgrowth of disseminated dormant tumor cells, in contrast to the aged skin, where age-related changes suppress melanoma growth but drive dissemination. A model of melanoma progression that addresses these microenvironmental complexities is the phenotype switching model, which argues that melanoma cells switch between a proliferative cell state and a slower-cycling, invasive state1–3. Dermal fibroblasts are key orchestrators of promoting phenotype switching in melanoma via changes in the secretion of soluble factors during aging4–8. Specifically, we have identified Wnt5A as a master regulator of activating metastatic dormancy, which enables efficient seeding and survival of melanoma cells in metastatic niches. Age-induced reprogramming of lung fibroblasts increases their secretion of the soluble Wnt antagonist sFRP1, which inhibits Wnt5A, enabling efficient metastatic outgrowth. Further, we have identified the tyrosine kinase receptors AXL and MER as promoting a dormancy-to-reactivation axis respectively. Overall, we find that age-induced changes in distal metastatic microenvironments promotes efficient reactivation of dormant melanoma cells in the lung.


Perception ◽  
1998 ◽  
Vol 27 (9) ◽  
pp. 1123-1134 ◽  
Author(s):  
Patricia A George ◽  
Graham J Hole

The effects of age-induced changes on face recognition were investigated as a means of exploring the role of age in the encoding of new facial memories. The ability of participants to recognise each of six previously learnt faces was tested with versions which were either identical to the learnt faces, the same age (but different in pose and expression), or younger or older in age. Participants were able to cope well with facial changes induced by ageing: their performance with older, but not younger, versions was comparable to that with faces which differed only in pose and expression. Since the large majority of different age versions were recognised successfully, it can be concluded that the process of recognition does not require an exact match in age characteristics between the stored representation of a face and the face currently in view. As the age-related changes explored here were those that occur during the period of growth, this in turn implies that the underlying structural physical properties of the face are (in addition to pose and facial expression) invariant to a certain extent.


2011 ◽  
Vol 39 (4) ◽  
pp. 1039-1044 ◽  
Author(s):  
Benjamin C. Krasity ◽  
Joshua V. Troll ◽  
Jerrold P. Weiss ◽  
Margaret J. McFall-Ngai

LBP [LPS (lipopolysaccharide)-binding protein] and BPI (bactericidal/permeability-increasing protein) are components of the immune system that have been principally studied in mammals for their involvement in defence against bacterial pathogens. These proteins share a basic architecture and residues involved in LPS binding. Putative orthologues, i.e. proteins encoded by similar genes that diverged from a common ancestor, have been found in a number of non-mammalian vertebrate species and several non-vertebrates. Similar to other aspects of immunity, such as the activity of Toll-like receptors and NOD (nucleotide-binding oligomerization domain) proteins, analysis of the conservation of LBPs and BPIs in the invertebrates promises to provide insight into features essential to the form and function of these molecules. This review considers state-of-the-art knowledge in the diversity of the LBP/BPI proteins across the eukaryotes and also considers their role in mutualistic symbioses. Recent studies of the LBPs and BPIs in an invertebrate model of beneficial associations, the Hawaiian bobtail squid Euprymna scolopes' alliance with the marine luminous bacterium Vibrio fischeri, are discussed as an example of the use of non-vertebrate models for the study of LBPs and BPIs.


2012 ◽  
Vol 78 (13) ◽  
pp. 4620-4626 ◽  
Author(s):  
Mark J. Mandel ◽  
Amy L. Schaefer ◽  
Caitlin A. Brennan ◽  
Elizabeth A. C. Heath-Heckman ◽  
Cindy R. DeLoney-Marino ◽  
...  

ABSTRACTChitin, a polymer ofN-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the familyVibrionaceae(“vibrios”), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacteriumVibrio fischeriis the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid,Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements.V. fischericells are harvested from seawater during each host generation, andV. fischeriis the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria.V. fischeriuses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.


1998 ◽  
Vol 62 (2) ◽  
pp. 115-122 ◽  
Author(s):  
G. De BENEDICTIS ◽  
L. CAROTENUTO ◽  
G. CARRIERI ◽  
M. De LUCA ◽  
E. FALCONE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document