scholarly journals Displacement of Escherichia coli O157:H7 from Rumen Medium Containing Prebiotic Sugars

2002 ◽  
Vol 68 (2) ◽  
pp. 519-524 ◽  
Author(s):  
Albane de Vaux ◽  
Mark Morrison ◽  
Robert W. Hutkins

ABSTRACT A fed-batch, anaerobic culture system was developed to assess the behavior of Escherichia coli O157:H7 in a rumen-like environment. Fermentation medium consisted of either 50% (vol/vol) raw or sterile rumen fluid and 50% phosphate buffer. Additional rumen fluid was added twice per day, and samples were removed three times per day to simulate the exiting of digesta and microbes from the rumen environment under typical feeding regimens. With both types of medium, anaerobic and enteric bacteria reached 1010 and 104 cells/ml, respectively, and were maintained at these levels for at least 5 days. When a rifampin-resistant strain of E. coli O157:H7 was inoculated into medium containing raw rumen fluid, growth did not occur. In contrast, when this strain was added to sterile rumen fluid medium, cell densities increased from 106 to 109 CFU/ml within 24 h. Most strains of E. coli O157:H7 are unable to ferment sorbitol; therefore, we assessed whether the addition of sorbitol as the only added carbohydrate could be used to competitively exclude E. coli O157:H7 from the culture system. When inoculated into raw rumen broth containing 3 g of sorbitol per liter, E. coli O157:H7 was displaced within 72 h. The addition of other competitive sugars, such as l-arabinose, trehalose, and rhamnose, to rumen medium gave similar results. However, whenever E. coli O157:H7 was grown in sterile rumen broth containing sorbitol, sorbitol-positive mutants appeared. These results suggest that a robust population of commensal ruminal microflora is required to invoke competitive exclusion of E. coli O157:H7 by the addition of “nonfermentable” sugars and that this approach may be effective as a preharvest strategy for reducing carriage of E. coli O157:H7 in the rumen.

2003 ◽  
Vol 66 (3) ◽  
pp. 355-363 ◽  
Author(s):  
M. M. BRASHEARS ◽  
D. JARONI ◽  
J. TRIMBLE

Lactic acid bacteria (LAB) were selected on the basis of characteristics indicating that they would be good candidates for a competitive exclusion product (CEP) that would inhibit Escherichia coli O157:H7 in the intestinal tract of live cattle. Fecal samples from cattle that were culture negative for E. coli O157:H7 were collected. LAB were isolated from cattle feces by repeated plating on deMan Rogosa Sharpe agar and lactobacillus selection agar. Six hundred eighty-six pure colonies were isolated, and an agar spot test was used to test each isolate for its inhibition of a four-strain mixture of E. coli O157:H7. Three hundred fifty-five isolates (52%) showed significant inhibition. Seventy-five isolates showing maximum inhibition were screened for acid and bile tolerance. Most isolates were tolerant of acid at pH levels of 2, 4, 5, and 7 and at bile levels of 0.05, 0.15, and 0.3% (oxgall) and were subsequently identified with the API system. Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus delbreukii, Lactobacillus salivarius, Lactobacillus brevis, Lactobacillus cellobiosus, Leuconostoc spp., and Pediococcus acidilactici were the most commonly identified LAB. Nineteen strains were further tested for antibiotic resistance and inhibition of E. coli O157:H7 in manure and rumen fluid. Four of these 19 strains showed susceptibility to all of the antibiotics, 13 significantly reduced E. coli counts in manure, and 15 significantly reduced E. coli counts in rumen fluid (P < 0.05) during at least one of the sampling periods. One of the strains, M35, was selected as the best candidate for a CEP. A 16S rRNA sequence analysis of M35 revealed its close homology to Lactobacillus crispatus. The CEP developed will be used in cattle-feeding trials.


2004 ◽  
Vol 67 (5) ◽  
pp. 884-888 ◽  
Author(s):  
THIRUNAVUKKARASU ANNAMALAI ◽  
MANOJ KUMAR MOHAN NAIR ◽  
PATRICK MAREK ◽  
PRADEEP VASUDEVAN ◽  
DAVID SCHREIBER ◽  
...  

The antibacterial effect of caprylic acid (35 and 50 mM) on Escherichia coli O157:H7 and total anaerobic bacteria at 39° C in rumen fluid (pH 5.6 and 6.8) from 12 beef cattle was investigated. The treatments containing caprylic acid at both pHs significantly reduced (P < 0.05) the population of E. coli O157:H7 compared with that in the control samples. At pH 5.6, both levels of caprylic acid killed E. coli O157:H7 rapidly, reducing the pathogen population to undetectable levels at 1 min of incubation (a more than 6.0-log CFU/ml reduction). In buffered rumen fluid at pH 6.8, 50 mM caprylic acid reduced the E. coli O157:H7 population to undetectable levels at 1 min of incubation, whereas 35 mM caprylic acid reduced the pathogen by approximately 3.0 and 5.0 log CFU/ml at 8 and 24 h of incubation, respectively. At both pHs, caprylic acid had a significantly lesser (P < 0.05) and minimal inhibitory effect on the population of total anaerobic bacteria in rumen compared with that on E. coli O157:H7. At 24 h of incubation, caprylic acid (35 and 50 mM) reduced the population of total anaerobic bacteria by approximately 2.0 log CFU/ml at pH 5.6, whereas at pH 6.8, caprylic acid (35 mM) did not have any significant (P > 0.05) inhibitory effect on total bacterial load. Results of this study revealed that caprylic acid was effective in inactivating E. coli O157:H7 in bovine rumen fluid, thereby justifying its potential as a preslaughter dietary supplement for reducing pathogen carriage in cattle.


2003 ◽  
Vol 228 (4) ◽  
pp. 365-369 ◽  
Author(s):  
Brandolyn H. Thran ◽  
Hussein S. Hussein ◽  
Doug Redelman ◽  
George C.J. Fernandez

The pH (i.e., 5.5, 5.75, 6.0, 6.25, 6.5, 6.75, 7.0, and 7.25) effect on Escherichia coli O157:H7 in an artificial rumen model was investigated. Eight fermenters were inoculated with bovine rumen fluid and were supplied with a diet (75 g of dry matter daily in 12 equal portions [every 2 hr]) containing similar forage-to-concentrate ratio. After an adaptation period (i.e., 3 days for adjusting the rumen fluid [pH 6.2] microbial population to the test pH and 4 days for adjustment to the diet at the test pH), each fermenter was inoculated with 109 cells of E. coli O157:H7. Samples were collected hourly for 12 hr and every 2 hr for an additional 12 hr and were analyzed by flow cytometer. E. coli O157:H7 could not be quantified after 24 hr, and detection was only possible after enrichment. Because the pathogen could not be detected 5 days postinoculation (i.e., Day 13), the fermenters were reinoculated with E. coli O157:H7 on Days 17 and 22. E. coli O157:H7 numbers decreased from 106 to 104/ml of fermenter contents in a quadratic ( P < 0.05) fashion over the 24-hr sampling period, and the rate of reduction was slower ( P < 0.05) for pH 7.0 than for other pH treatments. Results suggested that E. coli O157:H7 population were decreased by competitive exclusion and were not affected by culture pH.


2000 ◽  
Vol 63 (12) ◽  
pp. 1630-1636 ◽  
Author(s):  
SUZANA TKALCIC ◽  
CATHY A. BROWN ◽  
BARRY G. HARMON ◽  
ANANT V. JAIN ◽  
ERIC P. O. MUELLER ◽  
...  

Calves inoculated with Escherichia coli O157:H7 and fed either a high-roughage or high-concentrate diet were evaluated for rumen proliferation and fecal shedding of E. coli O157:H7. Calves fed the high-roughage diet had lower mean rumen volatile fatty acid concentrations and higher rumen pH values than did calves fed the high-concentrate diet. Despite these differences in rumen conditions, the calves fed the high-roughage diet did not have greater rumen populations of E. coli O157: H7 and did not exhibit increased or longer fecal shedding compared with the calves fed the high-concentrate diet. Two calves shedding the highest mean concentrations of E. coli O157:H7 were both fed the high-concentrate diet. There was a significant (P &lt; 0.05) positive correlation between fecal shedding and rumen volatile fatty acid concentration in calves fed a high-concentrate diet. The effects of diet on E. coli O157:H7 proliferation and acid resistance were investigated using an in vitro rumen fermentation system. Rumen fluid collected from steers fed a high-roughage diet, but not from steers fed a high-concentrate diet, supported the proliferation of E. coli O157:H7. Rumen fluid from steers fed a high-concentrate diet rapidly induced acid resistance in E. coli O157:H7. The impact of diet on fecal shedding of E. coli O157:H7 is still unclear and may depend on dietary effects on fermentation in the colon and on diet-induced changes in the resident microflora. However, rapid development of acid tolerance by E. coli O157:H7 in the rumens of calves fed high-concentrate diets, allowing larger populations to survive passage through the acidic abomasum to proliferate in the colon, may be one factor that influences fecal shedding in cattle on feed.


2002 ◽  
Vol 65 (12) ◽  
pp. 1854-1860 ◽  
Author(s):  
C. M. BYRNE ◽  
P. O'KIELY ◽  
D. J. BOLTON ◽  
J. J. SHERIDAN ◽  
D. A. McDOWELL ◽  
...  

The survival characteristics of Escherichia coli O157:H7 in silage derived from contaminated grass were investigated. The survival of other enteric bacteria was also investigated to determine if E. coli O157:H7 demonstrates enhanced acid tolerance in comparison. Samples of chopped grass were treated as follows: (i) no additive (control); (ii) inoculation with E. coli O157:H7 to a final concentration of log10 4.0 CFU g−1; (iii) addition of an 85% solution of formic acid at 3.0 ml kg−1 grass; and (iv) addition of both E. coli O157:H7 and formic acid, at the above concentrations. Treated 6-kg grass samples were packed into laboratory silos, sealed, and stored at 15°C for up to 180 days. Individual replicate silos were removed from storage periodically and subjected to microbiological and chemical analyses. Chemical analyses of the silage samples indicated that lactic acid-dominant fermentations, with a rapid drop in pH, occurred. Numbers of enteric bacteria decreased from log10 7.0 to 8.0 CFU g−1 to undetectable levels within 19 days' storage. E. coli O157:H7 did not survive the silage fermentation process, with numbers declining from approximately log10 4.0 CFU g−1 to undetectable levels within 19 days of ensiling. The pattern of decline in numbers of E. coli O157:H7 was the same as that for the enteric bacteria, indicating that under the conditions tested, the acid tolerance of E. coli O157:H7 was not significantly different from the acid tolerance of other enteric bacteria. This study found that E. coli O157:H7 did not survive a good silage fermentation process, indicating that properly ensiled grass that is correctly stored is unlikely to be a vector for the transmission of the pathogen among cattle.


2002 ◽  
Vol 65 (6) ◽  
pp. 1038-1040 ◽  
Author(s):  
SHAIKH MIZAN ◽  
MARGIE D. LEE ◽  
BARRY G. HARMON ◽  
SUZANA TKALCIC ◽  
JOHN J. MAURER

The emergence of antibiotic resistance among important foodborne pathogens like Escherichia coli O157:H7 has become an important issue with regard to food safety. In contrast to the case for Salmonella, antibiotic resistance has been slow in its development in E. coli O157:H7 despite the presence of mobile antibiotic resistance genes in other E. coli organisms that inhabit the same animal host. We set out to determine if rumen fluid influences the transfer of plasmid-mediated, antibiotic resistance to E. coli O157:H7. A commensal E. coli strain from a dairy cow was transformed with conjugative R plasmids and served as the donor in matings with naladixic acid–resistant E. coli O157:H7. R plasmids were transferred from the donor E. coli strain to E. coli O157:H7 in both Luria-Bertani (LB) broth and rumen fluid. R plasmids were transferred at a higher frequency to E. coli O157:H7 during 6 h of incubation in rumen fluid at rates comparable to those in LB broth, indicating that conditions in rumen fluid favor the transfer of the plasmids to E. coli O157. This finding suggests that the cow's rumen is a favorable environment for the genetic exchange of plasmids between microflora and resident E. coli O157:H7 in the bovine host.


2000 ◽  
Vol 63 (11) ◽  
pp. 1467-1474 ◽  
Author(s):  
S. J. BUCHKO ◽  
R. A. HOLLEY ◽  
W. O. OLSON ◽  
V. P. J. GANNON ◽  
D. M. VEIRA

Three groups of six yearling steers (three rumen fistulated plus three nonfistulated) fed one of three different grain diets (85% cracked corn, 15% whole cottonseed and 70% barley, or 85% barley) were inoculated with 1010 CFU of Escherichia coli O157:H7 strain 3081, and the presence of the inoculated strain was followed in the rumen fluid and feces for a 10-week period. E. coli O157:H7 was rapidly eliminated from the rumen of the animals on all three diets but persisted in the feces of some animals up to 67 days after inoculation, suggesting that the bovine hindgut is the site of E. coli O157:H7 persistence. A significant difference existed in the levels of E. coli O157:H7 shed by the animals among diets on days 5, 7, 49, and 63 after inoculation (P &lt; 0.05). No significant difference was found between the levels shed among diets on days 9 through 42 and on day 67 (P &gt; 0.05). The number of animals that were culture positive for E. coli O157:H7 strain 3081 during the 10-week period was significantly higher for the barley fed group (72 of 114 samplings) as opposed to the corn fed group (44 of 114 samplings) (P &lt; 0.005) and the cottonseed and barley fed group (57 of 114 samplings) (P &lt; 0.05). The fecal pH of the animals fed the corn diet was significantly lower (P &lt; 0.05) than the fecal pH of the animals fed the cottonseed and barley and barley diets, likely resulting in a less suitable environment for E. coli O157:H7 in the hindgut of the corn fed animals. E. coli O157:H7 strain 3081 was present in 3 of 30 (corn, 1 of 10; cottonseed, 1 of 10; barley, 1 of 10) animal drinking water samples, 3 of 30 (corn, 1 of 10; cottonseed, 0 of 10; barley, 2 of 10) water trough biofilm swabs, 5 of 30 (corn, 0 of 10; cottonseed, 2 of 10; barley, 3 of 10) feed samples, and 30 of 30 manure samples taken from the pens during the entire experimental period. Mouth swabs of the steers were also culture positive for E. coli O157:H7 strain 3081 in 30 of 180 samples (corn, 7 of 60; cottonseed, 4 of 60; barley, 19 of 60) taken during the 10-week period. Minimizing environmental dissemination of E. coli O157:H7 in conjunction with diet modification may reduce numbers of E. coli O157:H7–positive cattle.


2016 ◽  
Vol 4 (1) ◽  
pp. 25-28
Author(s):  
Md Ali Hossain ◽  
Nigarin Sultana ◽  
Selina Akter

Escherichia coli O157 was serologically identified from isolated E. coli of bovine origin in Jessore, Bangladesh. Pre-enrichment and enrichment media were used in isolating the enteric bacteria and swip off transient soil microbes. Differential and selective culrure techniques were used and biochemical tests were performed to identify E. coli strains. Slide agglutination test with antisera against O157 anigens were performed on biochemically identified E. coli strains. A total of 15 samples consisting freshly deficated cowdung, compost and soil near cow shed were assessed and among them 24 isolates were identified as E. coli. Twelve E. coli isolates isolated from eight samples gave agglutination with anti O157 antisera. Presence of E. coli O157 isolates was higher in composts and soils compared to fresh cowdung. This result indicates the strain’s adaptive and survival potential in environmental condition and raises potential public health concerns in handling such animal waste and its derivatives.Microbes and Health, January 2015. 4(1): 25-28


2020 ◽  
Vol 16 (3) ◽  
pp. 373-380
Author(s):  
Mohammad B. Zendeh ◽  
Vadood Razavilar ◽  
Hamid Mirzaei ◽  
Khosrow Mohammadi

Background: Escherichia coli O157:H7 is one of the most common causes of contamination in Lighvan cheese processing. Using from natural antimicrobial essential oils is applied method to decrease the rate of microbial contamination of dairy products. The present investigation was done to study the antimicrobial effects of Z. multiflora and O. basilicum essential oils on survival of E. coli O157:H7 during ripening of traditional Lighvan cheese. Methods: Leaves of the Z. multiflora and O. basilicum plants were subjected to the Clevenger apparatus. Concentrations of 0, 100 and 200 ppm of the Z. multiflora and 0, 50 and 100 ppm of O. basilicum essential oils and also 103 and 105 cfu/ml numbers of E. coli O157:H7 were used. The numbers of the E. coli O157:H7 bacteria were analyzed during the days 0, 30, 60 and 90 of the ripening period. Results: Z. multiflora and O. basilicum essential oils had considerable antimicrobial effects against E. coli O157:H7. Using the essential oils caused decrease in the numbers of E. coli O157:H7 bacteria in 90th days of ripening (P <0.05). Using from Z. multiflora at concentration of 200 ppm can reduce the survival of E. coli O157:H7 in Lighvan cheese. Conclusion: Using Z. multiflora and O. basilicum essential oils as good antimicrobial agents can reduce the risk of foodborne bacteria and especially E. coli O157:H7 in food products.


Author(s):  
Cheng Liu ◽  
Shuiqin Fang ◽  
Yachen Tian ◽  
Youxue Wu ◽  
Meijiao Wu ◽  
...  

Escherichia coli O157:H7 ( E. coli O157:H7) is a dangerous foodborne pathogen, mainly found in beef, milk, fruits, and their products, causing harm to human health or even death. Therefore, the detection of E. coli O157:H7 in food is particularly important. In this paper, we report a lateral flow immunoassay strip (LFIS) based on aggregation-induced emission (AIE) material labeling antigen as a fluorescent probe for the rapid detection of E. coli O157:H7. The detection sensitivity of the strip is 105 CFU/mL, which is 10 times higher than that of the colloidal gold test strip. This method has good specificity and stability and can be used to detect about 250 CFU of E. coli O157:H7 successfully in 25 g or 25 mL of beef, jelly, and milk. AIE-LFIS might be valuable in monitoring food pathogens for rapid detection.


Sign in / Sign up

Export Citation Format

Share Document