scholarly journals Production of Novel Tetrahydroxyfuranyl Fatty Acids from α-Linolenic Acid by Clavibacter sp. Strain ALA2

2003 ◽  
Vol 69 (7) ◽  
pp. 3868-3873 ◽  
Author(s):  
Masashi Hosokawa ◽  
Ching T. Hou ◽  
David Weisleder

ABSTRACT Previously, it was reported that a newly isolated microbial culture, Clavibacter sp. strain ALA2, produced trihydroxy unsaturated fatty acids, diepxoy bicyclic fatty acids, and tetrahydroxyfuranyl fatty acids (THFAs) from linoleic acid (C. T. Hou, J. Am. Oil Chem. Soc. 73:1359-1362, 1996; C. T. Hou and R. J. Forman III, J. Ind. Microbiol. Biotechnol. 24:275-276, 2000; C. T. Hou, H. Gardner, and W. Brown, J. Am. Oil Chem. Soc. 75:1483-1487, 1998; C. T. Hou, H. W. Gardner, and W. Brown, J. Am. Oil Chem. Soc. 78:1167-1169, 2001). In this study, we found that Clavibacter sp. strain ALA2 produced novel THFAs, including 13,16-dihydroxy-12-THFA, 15-epoxy-9(Z)-octadecenoic acid (13,16-dihydroxy-THFA), and 7,13,16-trihydroxy-12, 15-epoxy-9(Z)-octadecenoic acid (7,13,16-trihydroxy-THFA), from α-linolenic acid (9,12,15-octadecatrienoic acid). The chemical structures of these products were determined by gas chromatography-mass spectrometry and proton and 13C nuclear magnetic resonance analyses. The optimum incubation temperature was 30°C for production of both hydroxy-THFAs. 13,16-Dihydroxy-THFA was detected after 2 days of incubation, and the concentration reached 45 mg/50 ml after 7 days of incubation; 7,13,16-trihydroxy-THFA was not detected after 2 days of incubation, but the concentration reached 9 mg/50 ml after 7 days of incubation. The total yield of both 13,16-dihydroxy-THFA and 7,13,16-trihydroxy-THFA was 67% (wt/wt) after 7 days of incubation at 30°C and 200 rpm. In previous studies, it was reported that Clavibacter sp. strain ALA2 oxidized the C-7, C-12, C-13, C-16, and C-17 positions of linoleic acid (n-6) into hydroxy groups. In this case, the bond between the C-16 and C-17 carbon atoms is saturated. In α-linolenic acid (n-3), however, the bond between the C-16 and C-17 carbon atoms is unsaturated. It seems that enzymes of strain ALA2 oxidized the C-12-C-13 and C-16-C-17 double bonds into dihydroxy groups first and then converted them to hydroxy-THFAs.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lihong Ma ◽  
Xinqi Cheng ◽  
Chuan Wang ◽  
Xinyu Zhang ◽  
Fei Xue ◽  
...  

Abstract Background Cottonseed is one of the major sources of vegetable oil. Analysis of the dynamic changes of fatty acid components and the genes regulating the composition of fatty acids of cottonseed oil is of great significance for understanding the biological processes underlying biosynthesis of fatty acids and for genetic improving the oil nutritional qualities. Results In this study, we investigated the dynamic relationship of 13 fatty acid components at 12 developmental time points of cottonseed (Gossypium hirsutum L.) and generated cottonseed transcriptome of the 12 time points. At 5–15 day post anthesis (DPA), the contents of polyunsaturated linolenic acid (C18:3n-3) and saturated stearic acid (C18:0) were higher, while linoleic acid (C18:2n-6) was mainly synthesized after 15 DPA. Using 5 DPA as a reference, 15,647 non-redundant differentially expressed genes were identified in 10–60 DPA cottonseed. Co-expression gene network analysis identified six modules containing 3275 genes significantly associated with middle-late seed developmental stages and enriched with genes related to the linoleic acid metabolic pathway and α-linolenic acid metabolism. Genes (Gh_D03G0588 and Gh_A02G1788) encoding stearoyl-ACP desaturase were identified as hub genes and significantly up-regulated at 25 DPA. They seemed to play a decisive role in determining the ratio of saturated fatty acids to unsaturated fatty acids. FAD2 genes (Gh_A13G1850 and Gh_D13G2238) were highly expressed at 25–50 DPA, eventually leading to the high content of C18:2n-6 in cottonseed. The content of C18:3n-3 was significantly decreased from 5 DPA (7.44%) to 25 DPA (0.11%) and correlated with the expression characteristics of Gh_A09G0848 and Gh_D09G0870. Conclusions These results contribute to our understanding on the relationship between the accumulation pattern of fatty acid components and the expression characteristics of key genes involved in fatty acid biosynthesis during the entire period of cottonseed development.


1992 ◽  
Vol 285 (2) ◽  
pp. 557-562 ◽  
Author(s):  
T Liang ◽  
S Liao

Human or rat microsomal 5 alpha-reductase activity, as measured by enzymic conversion of testosterone into 5 alpha-dihydrotestosterone or by binding of a competitive inhibitor, [3H]17 beta-NN-diethulcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([3H]4-MA) to the reductase, is inhibited by low concentrations (less than 10 microM) of certain polyunsaturated fatty acids. The relative inhibitory potencies of unsaturated fatty acids are, in decreasing order: gamma-linolenic acid greater than cis-4,7,10,13,16,19-docosahexaenoic acid = cis-6,9,12,15-octatetraenoic acid = arachidonic acid = alpha-linolenic acid greater than linoleic acid greater than palmitoleic acid greater than oleic acid greater than myristoleic acid. Other unsaturated fatty acids such as undecylenic acid, erucic acid and nervonic acid, are inactive. The methyl esters and alcohol analogues of these compounds, glycerols, phospholipids, saturated fatty acids, retinoids and carotenes were inactive even at 0.2 mM. The results of the binding assay and the enzymic assay correlated well except for elaidic acid and linolelaidic acid, the trans isomers of oleic acid and linoleic acid respectively, which were much less active than their cis isomers in the binding assay but were as potent in the enzymic assay. gamma-Linolenic acid had no effect on the activities of two other rat liver microsomal enzymes: NADH:menadione reductase and glucuronosyl transferase. gamma-Linolenic acid, the most potent inhibitor tested, decreased the Vmax. and increased Km values of substrates, NADPH and testosterone, and promoted dissociation of [3H]4-MA from the microsomal reductase. gamma-Linolenic acid, but not the corresponding saturated fatty acid (stearic acid), inhibited the 5 alpha-reductase activity, but not the 17 beta-dehydrogenase activity, of human prostate cancer cells in culture. These results suggest that unsaturated fatty acids may play an important role in regulating androgen action in target cells.


1977 ◽  
Vol 55 (16) ◽  
pp. 2159-2167 ◽  
Author(s):  
Yolande Dalpé ◽  
Peterjürgen Neumann

The unsaturated fatty acids oleic, linoleic, and linolenic induce the formation of the imperfect state of fructification of the Graphium type (coremia) with Ceratocystis ulmi and C. piceae and the Leptographium type with C. penicillata. Intraspecific difference between several strains of C. ulmi show that linoleic acid is the best inducer with an optimal concentration from 0.05 to 0.20 g/ml of methanol between the 10th and 25th day of culture. Linoleic and linolenic acid extend the capacity of sporulation of C. penicillata, conserving the strains capability of differentiation of Leptographium structures when ordinarily only the natural substrate can reinduce it. Ceratocystis dryocoetidis cultivated in the same conditions remains insensible to the lipid treatments.


Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1559 ◽  
Author(s):  
Kelei Li ◽  
Andrew J. Sinclair ◽  
Feng Zhao ◽  
Duo Li

Cardiovascular disease (CVD) is a major cause of mortality. The effects of several unsaturated fatty acids on cardiometabolic health, such as eicosapentaenoic acid (EPA) docosahexaenoic acid (DHA), α linolenic acid (ALA), linoleic acid (LA), and oleic acid (OA) have received much attention in past years. In addition, results from recent studies revealed that several other uncommon fatty acids (fatty acids present at a low content or else not contained in usual foods), such as furan fatty acids, n-3 docosapentaenoic acid (DPA), and conjugated fatty acids, also have favorable effects on cardiometabolic health. In the present report, we searched the literature in PubMed, Embase, and the Cochrane Library to review the research progress on anti-CVD effect of these uncommon fatty acids. DPA has a favorable effect on cardiometabolic health in a different way to other long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), such as EPA and DHA. Furan fatty acids and conjugated linolenic acid (CLNA) may be potential bioactive fatty acids beneficial for cardiometabolic health, but evidence from intervention studies in humans is still limited, and well-designed clinical trials are required. The favorable effects of conjugated linoleic acid (CLA) on cardiometabolic health observed in animal or in vitro cannot be replicated in humans. However, most intervention studies in humans concerning CLA have only evaluated its effect on cardiometabolic risk factors but not its direct effect on risk of CVD, and randomized controlled trials (RCTs) will be required to clarify this point. However, several difficulties and limitations exist for conducting RCTs to evaluate the effect of these fatty acids on cardiometabolic health, especially the high costs for purifying the fatty acids from natural sources. This review provides a basis for better nutritional prevention and therapy of CVD.


2017 ◽  
Vol 83 (9) ◽  
Author(s):  
Woo-Ri Kang ◽  
Min-Ju Seo ◽  
Kyung-Chul Shin ◽  
Jin-Byung Park ◽  
Deok-Kun Oh

ABSTRACT Oleate hydratases (OhyAs) catalyze the conversion of unsaturated fatty acids to 10-hydroxy fatty acids, which are used as precursors of important industrial compounds, including lactones and ω-hydroxycarboxylic and α,ω-dicarboxylic acids. The genes encoding OhyA and a putative fatty acid hydratase in Stenotrophomonas maltophilia were identified by genomic analysis. The putative fatty acid hydratase was purified and identified as an oleate hydratase (OhyA2) based on its substrate specificity. The activity of OhyA2 as a holoenzyme was not affected by adding cofactors, whereas the activity of the original oleate hydratase (OhyA1) showed an increase. Thus, all characterized OhyAs were categorized as either OhyA1 or OhyA2 based on the activities of holoenzymes upon adding cofactors, which were determined by the type of the fourth conserved amino acid of flavin adenine dinucleotide (FAD)-binding motif. The hydration activities of S. maltophilia OhyA2 toward unsaturated fatty acids, including oleic acid, palmitoleic acid, linoleic acid, α-linolenic acid, and γ-linolenic acid, were greater than those of OhyA1. Moreover, the specific activity of S. maltophilia OhyA2 toward unsaturated fatty acids, with the exception of γ-linolenic acid, was the highest among all reported OhyAs. IMPORTANCE All characterized OhyAs were categorized as OhyA1s or OhyA2s based on the different properties of the reported and newly identified holo-OhyAs in S. maltophilia upon the addition of cofactors. OhyA2s showed higher activities toward polyunsaturated fatty acids (PUFAs), including linoleic acid, α-linolenic acid, and γ-linolenic acid, than those of OhyA1s. This suggests that OhyA2s can be used more effectively to convert plant oils to 10-hydroxy fatty acids because plant oils contain not only oleic acid but also PUFAs. The hydration activity of the newly identified OhyA2 from S. maltophilia toward oleic acid was the highest among the activity levels reported so far. Therefore, this enzyme is an efficient biocatalyst for the conversion of plant oils to 10-hydroxy fatty acids, which can be further converted to important industrial materials.


1975 ◽  
Vol 30 (5-6) ◽  
pp. 369-378 ◽  
Author(s):  
Hartmut Kayser

Abstract Argentation Thin-layer systems for argentation chromatography of fatty-acid esters of carotenoids have been developed. As two-dimensional reversed-phase partition system on paraffine impregnated cellulose this method permits a clear discrimination between saturated and unsaturated fatty acids. By adsorption on silver nitrate containing silica gel-G separation of carotenoid esters according to the degree of unsaturation of their fatty acids was established. With the use of known esters for comparison the fatty acids of whole carotenoid esters can be successfully analysed from minute amounts. Using these methods the carotenoid esters of pupae of Aglais urticae have been studied. The pupae contain 5.3% β-carotene, 46% lutein diester, 7.8% lutein 3-monoester, 11.7% lutein 3′-mono-ester, and 29.2% unesterified lutein. The fatty acids of the esters are linoleic acid (18:2) and linolenic acid (18:3) only. The diester fraction was composed of 70% dilinolenate, 25% linolenate-linoleate, and 5% dilinoleate. The combined monoesters consisted of 81% linolenate and 19% linoleate. The two main diesters could be isolated in a preparative scale and their structure verified by mass spectrometry. On the whole, in Aglais pupae 6.2 μg linolenic acid and 1.4 μg linoleic acid are bound to lutein. Since polyunsaturated fatty acids are of dietary origin, and represent essential factors for insect development, it is concluded, that their esterification with carotenoids may be a mode of storage comparable to the formation of glycerides.


1969 ◽  
Vol 113 (3) ◽  
pp. 555-558 ◽  
Author(s):  
P Kemp ◽  
R. M. C. Dawson

1. Phosphatidyl-N-(2-hydroxyethyl)alanine was isolated from the mixed protozoal fraction of rumen and characterized. 2. Of the fatty acids 31% was octadecenoic acid, 91% of which was the trans-Δ11-isomer, an intermediary in the ruminal hydrogenation of linolenic acid and linoleic acid.


OCL ◽  
2020 ◽  
Vol 27 ◽  
pp. 8
Author(s):  
Lahcen Hssaini ◽  
Hafida Hanine ◽  
Jamal Charafi ◽  
Rachid Razouk ◽  
Abderraouf Elantari ◽  
...  

With the progresses of oilseed industry, an important interest is currently being focused on exploiting novel and underutilized sources for vegetable oils. Being so far the less studied part in fig fruits, seeds separated from four fig cultivars were assessed for their oil content, fatty acids identification, total phenolics and invitro antioxidant analysis. A one-way Anova yielded statistically significant differences for all parameters, with the exception of pentadecylic, margaric and arachidic acids besides the total saturated fatty acids. Fig seeds presented a yellow colored oil, of which the content ranged from 21.54 ± 1.71 to 28.52 ± 0.62%. Gas liquid chromatography analysis of the seed oil showed high percentages of linolenic acid in the four cultivars ranging from 38.43 ± 0.01 to 43.57 ± 0.04, followed by linoleic acid (28.9 ± 0.06–34.5 ± 0.04%). Palmitic acid and stearic acid were the dominating saturated fatty acids in all samples, where the amounts were in the range from 8.54 ± 0.04 to 9.05 ± 0.06% and from 2.59 ± 0.13 to 3.3% respectively. The efficiency of the desaturation from oleic acid to linoleic acid estimated within desaturation pathway, was higher among all cultivars than the efficiency of the desaturation from linoleic acid to linolenic acid. This explains the large increase of 18:3 concentration in all samples. The local cultivar ‘C11A21’ exhibited the highest total unsaturated fatty acids and the lowest level of saturated fatty acids, while the cultivar ‘White Adriatic’ combined the most relevant phenolics content, antioxidant activity and half maximum inhibitory concentration. All sampled oil possessed an important phenolics content that displayed variable levels of antioxidant activity. The objective of this study is to bring new data on the biochemical attributes of fig seeds as a new source oil that can be used for nutritional, pharmaceutical and cosmetic purposes.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2713 ◽  
Author(s):  
Mayakrishnan Prabakaran ◽  
Kyoung-Jin Lee ◽  
Yeonju An ◽  
Chang Kwon ◽  
Soyeon Kim ◽  
...  

Soybeans are low in saturated fat and a rich source of protein, dietary fiber, and isoflavone; however, their nutritional shelf life is yet to be established. This study evaluated the change in the stability and quality of fatty acids in raw and roasted soybean flour under different storage temperatures and durations. In both types of soybean flour, the fatty-acid content was the highest in the order of linoleic acid (18-carbon chain with two double bonds; C18:2), oleic acid (C18:1), palmitic acid (C16:0), linolenic acid (18:3), and stearic acid (C18:0), which represented 47%, 26%, 12%, 9%, and 4% of the total fatty-acid content, respectively. The major unsaturated fatty acids of raw soybean flour—oleic acid, linoleic acid, and linolenic acid—decreased by 30.0%, 94.4%, and 97.7%, and 38.0%, 94.8%, and 98.0% when stored in polyethylene and polypropylene film, respectively, after 48 weeks of storage under high-temperature conditions. These values were later increased due to hydrolysis. This study presents the changes in composition and content of two soybean flour types and the changes in quality and stability of fatty acids in response to storage temperature and duration. This study shows the influence of storage conditions and temperature on the nutritional quality which is least affected by packing material.


Sign in / Sign up

Export Citation Format

Share Document