scholarly journals Transcriptional Activation of Quinoline Degradation Operons of Pseudomonas putida 86 by the AraC/XylS-Type Regulator OxoS and Cross-Regulation of the PqorM Promoter by XylS

2005 ◽  
Vol 71 (12) ◽  
pp. 8618-8626 ◽  
Author(s):  
Birgit Carl ◽  
Susanne Fetzner

ABSTRACT The quinoline-degradative gene cluster (oxoO, open reading frames 1 to 6 [ORF1 to -6], qorMSL, ORF7 to -9, oxoR) of Pseudomonas putida 86 consists of several overlapping operons controlled in response to quinoline by the master promoter PoxoO and internal promoters Porf3, PqorM, and PoxoR. ORF7 to -9, presumed to be important for maturation of the molybdenum hydroxylase quinoline 2-oxidoreductase, are also weakly transcribed independently of quinoline. Expression of the oxoS gene, located upstream of oxoO, is not influenced by the carbon source. OxoS shows 26% amino acid sequence identity to XylS, the transcriptional regulator of the meta pathway promoter Pm of TOL plasmid pWW0, and is required for quinoline-dependent transcription from PoxoO, Porf3, PqorM, and PoxoR. 5′ deletion analysis of PoxoO and PqorM suggested that a 5′-TGCPuCT-N3-GGGATA-3′ motif, which resembles the distal 5′-TGCA-N6-GGNTA-3′ half-site of the tandem XylS binding site, is essential for oxoS-dependent transcriptional activation. PqorM, which shows similarity to the tandem XylS recognition site of Pm, was cross-activated by the xylS gene product in response to benzoate. The distal half-site of PqorM is necessary, but probably not sufficient, for transcriptional activation by XylS. Despite conservation in PoxoO of a distal 5′-TGCA-N6-GGNTA-3′ sequence, cross-activation of PoxoO by XylS and benzoate was not observed. The oxoS gene product in the presence of quinoline weakly stimulated transcription from the Pm promoter. Involvement of an XylS-type protein in the regulation of genes encoding synthesis of a molybdenum hydroxylase is without precedent and may reflect the evolutionary origin of this pathway in the metabolism of aromatic compounds.

2003 ◽  
Vol 185 (8) ◽  
pp. 2451-2456 ◽  
Author(s):  
Michael J. McLeish ◽  
Malea M. Kneen ◽  
Kota N. Gopalakrishna ◽  
Carolyn W. Koo ◽  
Patricia C. Babbitt ◽  
...  

ABSTRACT The enzymes of the mandelate metabolic pathway permit Pseudomonas putida ATCC 12633 to utilize either or both enantiomers of mandelate as the sole carbon source. The genes encoding the mandelate pathway were found to lie on a single 10.5-kb restriction fragment. Part of that fragment was shown to contain the genes coding for mandelate racemase, mandelate dehydrogenase, and benzoylformate decarboxylase arranged in an operon. Here we report the sequencing of the remainder of the restriction fragment, which revealed three further open reading frames, denoted mdlX, mdlY, and mdlD. All were transcribed in the opposite direction from the genes of the mdlABC operon. Sequence alignments suggested that the open reading frames encoded a regulatory protein (mdlX), a member of the amidase signature family (mdlY), and an NAD(P)+-dependent dehydrogenase (mdlD). The mdlY and mdlD genes were isolated and expressed in Escherichia coli, and the purified gene products were characterized as a mandelamide hydrolase and an NAD(P)+-dependent benzaldehyde dehydrogenase, respectively.


2000 ◽  
Vol 182 (13) ◽  
pp. 3784-3793 ◽  
Author(s):  
Vincent J. J. Martin ◽  
William W. Mohn

ABSTRACT We have cloned and sequenced the dit gene cluster encoding enzymes of the catabolic pathway for abietane diterpenoid degradation by Pseudomonas abietaniphila BKME-9. Thedit gene cluster is located on a 16.7-kb DNA fragment containing 13 complete open reading frames (ORFs) and 1 partial ORF. The genes ditA1A2A3 encode the α and β subunits and the ferredoxin of the dioxygenase which hydroxylates 7-oxodehydroabietic acid to 7-oxo-11,12-dihydroxy-8,13-abietadien acid. The dioxygenase mutant strain BKME-941 (ditA1::Tn5) did not grow on nonaromatic abietanes, and transformed palustric and abietic acids to 7-oxodehydroabietic acid in cell suspension assays. Thus, nonaromatic abietanes are aromatized prior to further degradation. Catechol 2,3-dioxygenase activity of xylEtranscriptional fusion strains showed induction of ditA1and ditA3 by abietic, dehydroabietic, and 7-oxodehydroabietic acids, which support the growth of strain BKME-9, as well as by isopimaric and 12,14-dichlorodehydroabietic acids, which are diterpenoids that do not support the growth of strain BKME-9. In addition to the aromatic-ring-hydroxylating dioxygenase genes, thedit cluster includes ditC, encoding an extradiol ring cleavage dioxygenase, and ditR, encoding an IclR-type transcriptional regulator. Although ditR is not strictly required for the growth of strain BKME-9 on abietanes, aditR::Kmr mutation in aditA3::xylE reporter strain demonstrated that it encodes an inducer-dependent transcriptional activator of ditA3. An ORF with sequence similarity to genes encoding permeases (ditE) is linked with genes involved in abietane degradation.


2009 ◽  
Vol 75 (10) ◽  
pp. 3106-3114 ◽  
Author(s):  
Jessica Rehdorf ◽  
Christian L. Zimmer ◽  
Uwe T. Bornscheuer

ABSTRACT While the number of available recombinant Baeyer-Villiger monooxygenases (BVMOs) has grown significantly over the last few years, there is still the demand for other BVMOs to expand the biocatalytic diversity. Most BVMOs that have been described are dedicated to convert efficiently cyclohexanone and related cyclic aliphatic ketones. To cover a broader range of substrate types and enantio- and/or regioselectivities, new BVMOs have to be discovered. The gene encoding a BVMO identified in Pseudomonas putida JD1 converting aromatic ketones (HAPMO; 4-hydroxyacetophenone monooxygenase) was amplified from genomic DNA using SiteFinding-PCR, cloned, and functionally expressed in Escherichia coli. Furthermore, four other open reading frames could be identified clustered around this HAPMO. It has been suggested that these proteins, including the HAPMO, might be involved in the degradation of 4-hydroxyacetophenone. Substrate specificity studies revealed that a large variety of other arylaliphatic ketones are also converted via Baeyer-Villiger oxidation into the corresponding esters, with preferences for para-substitutions at the aromatic ring. In addition, oxidation of aldehydes and some heteroaromatic compounds was observed. Cycloketones and open-chain ketones were not or poorly accepted, respectively. It was also found that this enzyme oxidizes aromatic ketones such as 3-phenyl-2-butanone with excellent enantioselectivity (E ≫100).


2007 ◽  
Vol 73 (8) ◽  
pp. 2491-2497 ◽  
Author(s):  
Stephan Bathe ◽  
Paul R. Norris

ABSTRACT Genes of Sulfolobus metallicus that appeared to be upregulated in relation to growth on either ferrous iron or sulfur were identified using subtractive hybridization of cDNAs. The genes upregulated during growth on ferrous iron were found in a cluster, and most were predicted to encode membrane proteins. Quantitative reverse transcription-PCR of cDNA showed upregulation of most of these genes during growth on ferrous iron and pyrite compared to results during growth on sulfur. The highest expression levels observed included those for genes encoding proteins with similarities to cytochrome c oxidase subunits and a CbsA-like cytochrome. The genes identified here that may be involved in oxidation of ferrous iron by S. metallicus are termed fox genes. Of three available genomes of Sulfolobus species (S. tokodaii, S. acidocaldarius, and S. solfataricus), only that of S. tokodaii has a cluster of highly similar open reading frames, and only S. tokodaii of these three species was also able to oxidize ferrous iron. A gene encoding sulfur oxygenase-reductase was identified as the source of the dominant transcript in sulfur-grown cells of S. metallicus, with the predicted protein showing high identities to the previously described examples from S. tokodaii and species of Acidianus.


1998 ◽  
Vol 180 (5) ◽  
pp. 1194-1199 ◽  
Author(s):  
Juanito V. Parales ◽  
Rebecca E. Parales ◽  
Sol M. Resnick ◽  
David T. Gibson

ABSTRACT Biotransformations with recombinant Escherichia coliexpressing the genes encoding 2-nitrotoluene 2,3-dioxygenase (2NTDO) from Pseudomonas sp. strain JS42 demonstrated that 2NTDO catalyzes the dihydroxylation and/or monohydroxylation of a wide range of aromatic compounds. Extremely high nucleotide and deduced amino acid sequence identity exists between the components from 2NTDO and the corresponding components from 2,4-dinitrotoluene dioxygenase (2,4-DNTDO) from Burkholderia sp. strain DNT (formerlyPseudomonas sp. strain DNT). However, comparisons of the substrates oxidized by these dioxygenases show that they differ in substrate specificity, regiospecificity, and the enantiomeric composition of their oxidation products. Hybrid dioxygenases were constructed with the genes encoding 2NTDO and 2,4-DNTDO. Biotransformation experiments with these hybrid dioxygenases showed that the C-terminal region of the large subunit of the oxygenase component (ISPα) was responsible for the enzyme specificity differences observed between 2NTDO and 2,4-DNTDO. The small subunit of the terminal oxygenase component (ISPβ) was shown to play no role in determining the specificities of these dioxygenases.


2020 ◽  
Vol 8 (6) ◽  
pp. 888
Author(s):  
Justas Vaitekūnas ◽  
Renata Gasparavičiūtė ◽  
Jonita Stankevičiūtė ◽  
Gintaras Urbelis ◽  
Rolandas Meškys

N-Heterocyclic compounds are widely spread in the biosphere, being constituents of alkaloids, cofactors, allelochemicals, and artificial substances. However, the fate of such compounds including a catabolism of hydroxylated pyridines is not yet fully understood. Arthrobacter sp. IN13 is capable of using 4-hydroxypyridine as a sole source of carbon and energy. Three substrate-inducible proteins were detected by comparing protein expression profiles, and peptide mass fingerprinting was performed using MS/MS. After partial sequencing of the genome, we were able to locate genes encoding 4-hydroxypyridine-inducible proteins and identify the kpi gene cluster consisting of 16 open reading frames. The recombinant expression of genes from this locus in Escherichia coli and Rhodococcus erytropolis SQ1 allowed an elucidation of the biochemical functions of the proteins. We report that in Arthrobacter sp. IN13, the initial hydroxylation of 4-hydroxypyridine is catalyzed by a flavin-dependent monooxygenase (KpiA). A product of the monooxygenase reaction is identified as 3,4-dihydroxypyridine, and a subsequent oxidative opening of the ring is performed by a hypothetical amidohydrolase (KpiC). The 3-(N-formyl)-formiminopyruvate formed in this reaction is further converted by KpiB hydrolase to 3-formylpyruvate. Thus, the degradation of 4-hydroxypyridine in Arthrobacter sp. IN13 was analyzed at genetic and biochemical levels, elucidating this catabolic pathway.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Helena Turano ◽  
Fernando Gomes ◽  
Gesiele A. Barros-Carvalho ◽  
Ralf Lopes ◽  
Louise Cerdeira ◽  
...  

ABSTRACT A novel transposon belonging to the Tn3-like family was identified on the chromosome of a commensal strain of Pseudomonas aeruginosa sequence type 2343 (ET02). Tn6350 is 7,367 bp long and harbors eight open reading frames (ORFs), an ATPase (IS481 family), a transposase (DDE catalytic type), a Tn3 resolvase, three hypothetical proteins, and genes encoding the new pyocin S8 with its immunity protein. We show that pyocin S8 displays activity against carbapenemase-producing P. aeruginosa, including IMP-1, SPM-1, VIM-1, GES-5, and KPC-2 producers.


Diseases ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 15 ◽  
Author(s):  
Janani Ramesh ◽  
Larance Ronsard ◽  
Anthony Gao ◽  
Bhuvarahamurthy Venugopal

Autophagy is a regular and substantial “clear-out process” that occurs within the cell and that gets rid of debris that accumulates in membrane-enclosed vacuoles by using enzyme-rich lysosomes, which are filled with acids that degrade the contents of the vacuoles. This machinery is well-connected with many prevalent diseases, including cancer, HIV, and Parkinson’s disease. Considering that autophagy is well-known for its significant connections with a number of well-known fatal diseases, a thorough knowledge of the current findings in the field is essential in developing therapies to control the progression rate of diseases. Thus, this review summarizes the critical events comprising autophagy in the cellular system and the significance of its key molecules in manifesting this pathway in various diseases for down- or upregulation. We collectively reviewed the role of autophagy in various diseases, mainly neurodegenerative diseases, cancer, inflammatory diseases, and renal disorders. Here, some collective reports on autophagy showed that this process might serve as a dual performer: either protector or contributor to certain diseases. The aim of this review is to help researchers to understand the role of autophagy-regulating genes encoding functional open reading frames (ORFs) and its connection with diseases, which will eventually drive better understanding of both the progression and suppression of different diseases at various stages. This review also focuses on certain novel therapeutic strategies which have been published in the recent years based on targeting autophagy key proteins and its interconnecting signaling cascades.


2000 ◽  
Vol 182 (21) ◽  
pp. 6123-6129 ◽  
Author(s):  
Matthias Contzen ◽  
Andreas Stolz

ABSTRACT The genes for two different protocatechuate 3,4-dioxygenases (P34Os) were cloned from the 4-sulfocatechol-degrading bacteriumAgrobacterium radiobacter strain S2 (DSMZ 5681). ThepcaH1G1 genes encoded a P34O (P34O-I) which oxidized protocatechuate but not 4-sulfocatechol. These genes were part of a protocatechuate-degradative operon which strongly resembled the isofunctional operon from the protocatechuate-degrading strainAgrobacterium tumefaciens A348 described previously by D. Parke (FEMS Microbiol. Lett. 146:3–12, 1997). The second P34O (P34O-II), encoded by the pcaH2G2 genes, was functionally expressed and shown to convert protocatechuate and 4-sulfocatechol. A comparison of the deduced amino acid sequences of PcaH-I and PcaH-II, and of PcaG-I and PcaG-II, with each other and with the corresponding sequences from the P34Os, from other bacterial genera suggested that the genes for the P34O-II were obtained by strain S2 by lateral gene transfer. The genes encoding the P34O-II were found in a putative operon together with two genes which, according to sequence alignments, encoded transport proteins. Further downstream from this putative operon, two open reading frames which code for a putative regulator protein of the IclR family and a putative 3-carboxymuconate cycloisomerase were identified.


Sign in / Sign up

Export Citation Format

Share Document