scholarly journals Alternative Luciferase for Monitoring Bacterial Cells under Adverse Conditions

2005 ◽  
Vol 71 (7) ◽  
pp. 3427-3432 ◽  
Author(s):  
Siouxsie Wiles ◽  
Kathryn Ferguson ◽  
Martha Stefanidou ◽  
Douglas B. Young ◽  
Brian D. Robertson

ABSTRACT The availability of cloned luciferase genes from fireflies (luc) and from bacteria (luxAB) has led to the widespread use of bioluminescence as a reporter to measure cell viability and gene expression. The most commonly occurring bioluminescence system in nature is the deep-sea imidazolopyrazine bioluminescence system. Coelenterazine is an imidazolopyrazine derivative which, when oxidized by an appropriate luciferase enzyme, produces carbon dioxide, coelenteramide, and light. The luciferase from the marine copepod Gaussia princeps (Gluc) has recently been cloned. We expressed the Gluc gene in Mycobacterium smegmatis using a shuttle vector and compared its performance with that of an existing luxAB reporter. In contrast to luxAB, the Gluc luciferase retained its luminescence output in the stationary phase of growth and exhibited enhanced stability during exposure to low pH, hydrogen peroxide, and high temperature. The work presented here demonstrated the utility of the copepod luciferase bioluminescent reporter as an alternative to bacterial luciferase, particularly for monitoring responses to environmental stress stimuli.

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3069 ◽  
Author(s):  
Anastasia Khandazhinskaya ◽  
Liudmila Alexandrova ◽  
Elena Matyugina ◽  
Pavel Solyev ◽  
Olga Efremenkova ◽  
...  

A series of novel 5′-norcarbocyclic derivatives of 5-alkoxymethyl or 5-alkyltriazolyl-methyl uracil were synthesized and the activity of the compounds evaluated against both Gram-positive and Gram-negative bacteria. The growth of Mycobacterium smegmatis was completely inhibited by the most active compounds at a MIC99 of 67 μg/mL (mc2155) and a MIC99 of 6.7–67 μg/mL (VKPM Ac 1339). Several compounds also showed the ability to inhibit the growth of attenuated strains of Mycobacterium tuberculosis ATCC 25177 (MIC99 28–61 μg/mL) and Mycobacterium bovis ATCC 35737 (MIC99 50–60 μg/mL), as well as two virulent strains of M. tuberculosis; a laboratory strain H37Rv (MIC99 20–50 μg/mL) and a clinical strain with multiple drug resistance MS-115 (MIC99 20–50 μg/mL). Transmission electron microscopy (TEM) evaluation of M. tuberculosis H37Rv bacterial cells treated with one of the compounds demonstrated destruction of the bacterial cell wall, suggesting that the mechanism of action for these compounds may be related to their interactions with bacteria cell walls.


2011 ◽  
Vol 11 ◽  
pp. 2382-2390 ◽  
Author(s):  
J. T. Atosuo ◽  
E.-M. Lilius

A recombinantEscherichia coliK-12 strain, transformed with a modified bacterial luciferase gene (luxABCDE) fromPhotorhabdus luminescens, was constructed in order to monitor the activity of various antimicrobial agents on a real-time basis. ThisE. coli-lux emitted, without any addition of substrate, constitutive bioluminescence (BL), which correlated to the number of viable bacterial cells. The decrease in BL signal correlated to the number of killed bacterial cells. Antimicrobial activity of hydrogen peroxide (H2O2) and myeloperoxidase (MPO) was assessed. In high concentrations, H2O2alone had a bacteriocidic function and MPO enhanced this killing by forming hypochlorous acid (HOCl). Taurine, the known HOCl scavenger, blocked the killing by MPO. WhenE. coli-lux was incubated with neutrophils, similar killing kinetics was recorded as in H2O2/MPO experiments. The opsonization of bacteria enhanced the killing, and the maximum rate of the MPO release from lysosomes coincided with the onset of the killing.


Author(s):  
N. Rublenko

Salmonella is one of the most common cause of the food borne illness. Salmonella belongs to Enterobacteriacae family and consists of 2 species, which diverge on 6 subspecies.These subspecies consists of 2700 serovars. There are typhoid serovars among them - S. Typhi, Paratyphi A, B, C - which cause typhoid fever in human. The rest of the serovars are non-typhoidal and leads to gastroenteritis both in animal and human. Salmonella enters to a mammal organism as a result of consumption of contaminated food products: meat, eggs, milk and products containing them. The entry of the infection for salmonellosis is the small intestine mucosa. Salmonella attaches to cell walls by fimbria and pili. Salmonella has several systems that are activated in response to adverse conditions such as: high osmolarity, acid or heat shock and nutrient deficiencies. They are based on the principle of a two-component system in which there is a sensor that receives cytoplasmic signals, and a regulator. Regulator (usually DNA-binding protein) initiates the transcription of the virulence genes (Chakraborty, 2015). The sensor is histidine kinase, which phosphorylates the regulatory protein, thereby activating it.During the infectious cycle of salmonella in mammalian organism the formation of specific vacuole SCV takes place (Salmonella-containing vacuole-containing vacuole containing salmonella) in the cytoplasm of the eukaryotic cell (Steele-Mortimer, 2008). SCV is a modified phagosome, which is formed as a result of cytoskeleton rearrangements. The target are usually phagocytic cells : neutrophils, macrophages and epithelial cells of the small intestine mucosa - M-cells (Akhmetova, 2012). Given the specific mechanism of infection, salmonella is considered a facultative intracellular pathogen. Bacterium invades the eukaryotic cell by rearrangement of its cytoskeleton with effector proteins and continue to persistence in a form of SCV. It is well-known nowadays that tolerance to high osmotic pressure is achieved through the EnvZ / OmpR system, which also regulates the expression of the ssrAB operon that is localized on the Salmonella pathogenicity island SPI-2 and triggers the expression of the effector proteins. The ssrAB operon is also regulated by the two-component acid shock response system PhoP / PhoQ (Worley, 2000). The functioning of the PhoP / PhoQ system directly depends on the sigma factor RpoS, which accumulates under low concentrations of magnesium cations (Tu, 2006). According to the researches of transduction between the EnvZ / OmpR components, it is clear that salmonella receives signals from the cytoplasmic environment, and sensory molecules are located on the inner membrane (Kenney, 2019; Wang et al., 2012). The ability to survive under acid shock is provided by the PhoP / PhoQ system, which also operates on the principle of signal transduction. PhoQ is a Histidine Kinase Signal Sensor. Signals are acidic pH, divalent cations and positively charged antimicrobial peptides. An important function of the two-component PhoP / PhoQ system is the control of spi ssa gene expression in a macrophage environment (Bijlsma, 2005). These genes are the main component of the type III secretion systems and are transcribed only when salmonella enters eukaryotic cell. (Bijlsma, 2005). The main regulator of signal transduction systems PhoP/PhoQ and EnvZ/OmpR is sigma-factor RpoS - subunit of bacterial RNA-polymerase - which operates in stationary phase at low pH, high omolarity, heat shock or nutrient deficiency. RpoS protein accumulates in adverse conditions during stationary phase (Mg2+ deficiency, low pH, high osmolarity). Need in magnesium cations is dependent on their ability to act as cofactors in many enzymatic activities. The accumulation begins at exponential (logarithmic) phase of bacterial reproduction. This is the phase of active cell division. Two factors MgtA and MgtB are responsible for Mg2+ transport. Another molecule with the same function is CorA - bivalent cation channel, though its transcriptions doesn’t depent on magnesium concentration in cell. In a case of magnesium deficiency at the stationary phase, RpoS accumulates vigorously an initiates replication of PhoP/PhoQ. PhoP/PhoQ regulates tolerance to inorganic acids. Also, PhoP/PhoQ controls adaptation to magnesium cations deficiency and macrophage activity. Results of many studies on genes coding this system and their mutations led to conclusion the mutation or inactivation of one factor causes decrease in virulence and makes bacterial susceptible to acid environment. To date, the stages of the infectious process for salmonellosis have been studied and described in detail in the literature. Particular attention is paid to signal transduction systems that are common among enterobacteria and help to avoid adverse conditions. Their functioning and regulation are investigated. It is known that salmonella receives signals for the activation of sensors from the cytoplasm, but the nature of these signals is not yet fully understood. Adaptation of the bacteria to adverse conditions and the response to phagocytosis is initiated by the transcription of pathogenic genes and the suppression of the transcription of the operon, which neutralize the conditions in the cytoplasm of salmonella cells. Thus, adapting to the conditions of target cells, salmonella continues to multiply in the body. Key words: salmonella, pH, osmolarity, virulencegenes, operon, signal transduction.


Author(s):  
HEDDY JULISTIONO ◽  
INTAN PERMATASARI SUSENO ◽  
NURUL HANDAYANI ◽  
RINI HANDAYANI ◽  
PUSPA DEWI LOTULUNG

Objectives: To understand the potency of herbal formulation of virgin coconut oil (VCO) and andaliman (Zanthoxylum acanthopodium) fruit activity against microbes, effects of ethylene acetate and hexane extracts of fruit of andaliman on viability and ions leakages of Mycobacterium smegmatis dan Staphylococcus aureus treated with VCO has been investigated. Methods: Antibacterial activity of extracts of andaliman fruit, or VCO, or andaliman and VCO against M. smegmatis and S. aureus was investigated using MTT assay method. Membrane disruption of bacterial cells treated with the plant extract and VCO was determined by measuring potassium and sodium ions leakages using Atomic Adsorbtion Spectrophotometer. Results: VCO of 512 μg/ml did not have antibacterial activity. In M. smegmatis treated with andaliman hexane extract, presence VCO decreased both ions leakage whereas in S. aureus treated with ethyl acetate extract only sodium ion was decreased. In both microorganisms, VCO could not protect cells of both M. smegmatis and S. aureus from death caused by andaliman extracts. Conclusions: VCO prevented ions leakages of the bacteria treated with extract of andaliman but did not protects cells from death.


Author(s):  
Peter J. Herring ◽  
Ole Munk

The escal light gland of three different-sized specimens of the deep-sea anglerfish Haplophryne mollis (family Linophrynidae) has been examined by light and electron microscopy. The light gland has a central cavity, with diverging branched ducts which ramify into numerous tightly-packed radial tubules. In the two largest specimens all glandular lumina contain symbiotic bacteria. Except for a thin-walled part of the typical radiating tubules, the epithelial walls of the light gland are of a uniform structure, consisting of flattened basal cells, situated next to the basal lamina, and tall cells extending to the lumen.In the smallest specimen examined the various parts of the light gland were not fully differentiated and only a very few symbiotic bacteria were present; its glandular epithelium differed from that of the two larger specimens by containing many goblet cells, the secretion of which may be important for the initial establishment of the right strain of symbiotic bacteriaObservations on the luminescence of live specimens have shown that the light emission can be rapidly modulated from within the esca. The in vivo flash kinetics are considerably slower than those of Dolopichthys longicornis, but similar to those of both the caruncle exudate of Ceratias holboelli and in vitro anglerfish bacterial luciferase.


Author(s):  
John Maynard Smith ◽  
Eors Szathmary

The establishment of a permanent and obligate coexistence of genetic entities that were once capable of independent existence played an important part in the origin of the eukaryotes, and, if our earlier speculations are correct, in the origin of cells and chromosomes. In this chapter, we discuss other examples of symbiosis. The term is used to include all cases in which two or more different kinds of organism live in close association: thus it extends from parasitism to mutualism. Mutualism has been defined as a relationship from which both partners benefit. However, as will become clearer below, it is hard to measure, or even to define, ‘benefits’: in what sense is a mitochondrion today better off than its once free-living ancestors? The two questions that we shall ask are: • What are the selective force acting on the two partners in present-day symbioses? • Could such selective forces lead to the establishment of permanent and obligate coexistence? First, however, we review briefly some of the ecologically more important symbioses (for further examples, see Pirozynski & Hawksworth, 1988; Margulis & Fester, 1991). We mention only a fraction of the known mutualistic associations. Others, including cases of interaction between animals and prokaryotes, are discussed below. It is striking that symbiotic relationships have been important in the utilization by plants of nutrient-poor soils, the colonization of bare rock, life in deep-sea vents, the construction of coral reefs, and the utilization of plant material by several groups of insects. Sonea (1991; see also Sonea & Panisset, 1983) has pictured the world of bacteria as a single superorganism, whose individual component cells rely for their survival on ecological exchange of metabolites, and on genetic exchange via plasmids and phages. This picture has the virtue of emphasizing the important role played by plasmids and temperate phages in conferring on individual bacterial cells capacities needed in particular environments—for example, resistance to antibiotics, tolerance of heavy metals and new metabolic abilities. But the picture suffers from the drawback that is fatal to all holistic models of evolution, from the Gaia hypothesis downwards, of losing all sight of the units of selection, and hence of lacking any model of the dynamics of evolutionary change.


2012 ◽  
Vol 78 (23) ◽  
pp. 8321-8330 ◽  
Author(s):  
Nicholas B. Justice ◽  
Chongle Pan ◽  
Ryan Mueller ◽  
Susan E. Spaulding ◽  
Vega Shah ◽  
...  

ABSTRACTArchaea are widely distributed and yet are most often not the most abundant members of microbial communities. Here, we document a transition fromBacteria- toArchaea-dominated communities in microbial biofilms sampled from the Richmond Mine acid mine drainage (AMD) system (∼pH 1.0, ∼38°C) and in laboratory-cultivated biofilms. This transition occurs when chemoautotrophic microbial communities that develop at the air-solution interface sink to the sediment-solution interface and degrade under microaerobic and anaerobic conditions. The archaea identified in these sunken biofilms are from the classThermoplasmata, and in some cases, the highly divergent ARMAN nanoarchaeal lineage. In several of the sunken biofilms, nanoarchaea comprise 10 to 25% of the community, based on fluorescentin situhybridization and metagenomic analyses. Comparative community proteomic analyses show a persistence of bacterial proteins in sunken biofilms, but there is clear evidence for amino acid modifications due to acid hydrolysis. Given the low representation of bacterial cells in sunken biofilms based on microscopy, we infer that hydrolysis reflects proteins derived from lysed cells. For archaea, we detected ∼2,400 distinct proteins, including a subset involved in proteolysis and peptide uptake. Laboratory cultivation experiments using complex carbon substrates demonstrated anaerobic enrichment ofFerroplasmaand Aplasma coupled to the reduction of ferric iron. These findings indicate dominance of acidophilic archaea in degrading biofilms and suggest that they play roles in anaerobic nutrient cycling at low pH.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Miseon Park ◽  
Wilfrid J. Mitchell ◽  
Fatemeh Rafii

Trehalose has been shown to protect bacterial cells from environmental stress. Its uptake and osmoprotective effect inClostridium perfringenswere investigated by comparing wild typeC. perfringensATCC 13124 with a fluoroquinolone- (gatifloxacin-) resistant mutant. In a chemically defined medium, trehalose and sucrose supported the growth of the wild type but not that of the mutant. Microarray data and qRT-PCR showed that putative genes for the phosphorylation and transport of sucrose and trehalose (via phosphoenolpyruvate-dependent phosphotransferase systems, PTS) and some regulatory genes were downregulated in the mutant. The wild type had greater tolerance than the mutant to salts and low pH; trehalose and sucrose further enhanced the osmotolerance of the wild type to NaCl. Expression of the trehalose-specific PTS was lower in the fluoroquinolone-resistant mutant. Protection ofC. perfringensfrom environmental stress could therefore be correlated with the ability to take up trehalose.


Sign in / Sign up

Export Citation Format

Share Document