Symbiosis

Author(s):  
John Maynard Smith ◽  
Eors Szathmary

The establishment of a permanent and obligate coexistence of genetic entities that were once capable of independent existence played an important part in the origin of the eukaryotes, and, if our earlier speculations are correct, in the origin of cells and chromosomes. In this chapter, we discuss other examples of symbiosis. The term is used to include all cases in which two or more different kinds of organism live in close association: thus it extends from parasitism to mutualism. Mutualism has been defined as a relationship from which both partners benefit. However, as will become clearer below, it is hard to measure, or even to define, ‘benefits’: in what sense is a mitochondrion today better off than its once free-living ancestors? The two questions that we shall ask are: • What are the selective force acting on the two partners in present-day symbioses? • Could such selective forces lead to the establishment of permanent and obligate coexistence? First, however, we review briefly some of the ecologically more important symbioses (for further examples, see Pirozynski & Hawksworth, 1988; Margulis & Fester, 1991). We mention only a fraction of the known mutualistic associations. Others, including cases of interaction between animals and prokaryotes, are discussed below. It is striking that symbiotic relationships have been important in the utilization by plants of nutrient-poor soils, the colonization of bare rock, life in deep-sea vents, the construction of coral reefs, and the utilization of plant material by several groups of insects. Sonea (1991; see also Sonea & Panisset, 1983) has pictured the world of bacteria as a single superorganism, whose individual component cells rely for their survival on ecological exchange of metabolites, and on genetic exchange via plasmids and phages. This picture has the virtue of emphasizing the important role played by plasmids and temperate phages in conferring on individual bacterial cells capacities needed in particular environments—for example, resistance to antibiotics, tolerance of heavy metals and new metabolic abilities. But the picture suffers from the drawback that is fatal to all holistic models of evolution, from the Gaia hypothesis downwards, of losing all sight of the units of selection, and hence of lacking any model of the dynamics of evolutionary change.

Author(s):  
Rachel M. Jeffreys ◽  
Marc S.S. Lavaleye ◽  
Magda J.N. Bergman ◽  
Gerard C.A. Duineveld ◽  
Rob Witbaard ◽  
...  

2019 ◽  
Vol 172 (2) ◽  
pp. 411-416 ◽  
Author(s):  
Richard T Agans ◽  
Alex Gordon ◽  
Saber Hussain ◽  
Oleg Paliy

Abstract Due to continued technological development, people increasingly come in contact with engineered nanomaterials (ENMs) that are now used in foods and many industrial applications. Many ENMs have historically been shown to possess antimicrobial properties, which has sparked concern for how dietary nanomaterials impact gastrointestinal health via microbial dysbiosis. We employed an in vitro Human Gut Simulator system to examine interactions of dietary nano titanium dioxide (TiO2) with human gut microbiota. Electron microscopy indicated a close association of TiO2 particles with bacterial cells. Addition of TiO2 to microbial communities led to a modest reduction in community density but had no impact on community diversity and evenness. In contrast, administration of known antimicrobial silver nanoparticles (NPs) in a control experiment resulted in a drastic reduction of population density. In both cases, communities recovered once the addition of nanomaterials was ceased. Constrained ordination analysis of community profiles revealed that simulated colonic region was the primary determinant of microbiota composition. Accordingly, predicted community functional capacity and measured production of short-chain fatty acids were not changed significantly upon microbiota exposure to TiO2. We conclude that tested TiO2 NPs have limited direct effect on human gut microbiota.


2005 ◽  
Vol 71 (7) ◽  
pp. 3427-3432 ◽  
Author(s):  
Siouxsie Wiles ◽  
Kathryn Ferguson ◽  
Martha Stefanidou ◽  
Douglas B. Young ◽  
Brian D. Robertson

ABSTRACT The availability of cloned luciferase genes from fireflies (luc) and from bacteria (luxAB) has led to the widespread use of bioluminescence as a reporter to measure cell viability and gene expression. The most commonly occurring bioluminescence system in nature is the deep-sea imidazolopyrazine bioluminescence system. Coelenterazine is an imidazolopyrazine derivative which, when oxidized by an appropriate luciferase enzyme, produces carbon dioxide, coelenteramide, and light. The luciferase from the marine copepod Gaussia princeps (Gluc) has recently been cloned. We expressed the Gluc gene in Mycobacterium smegmatis using a shuttle vector and compared its performance with that of an existing luxAB reporter. In contrast to luxAB, the Gluc luciferase retained its luminescence output in the stationary phase of growth and exhibited enhanced stability during exposure to low pH, hydrogen peroxide, and high temperature. The work presented here demonstrated the utility of the copepod luciferase bioluminescent reporter as an alternative to bacterial luciferase, particularly for monitoring responses to environmental stress stimuli.


2016 ◽  
Vol 371 (1695) ◽  
pp. 20150295 ◽  
Author(s):  
Nichole A. Broderick

Drosophila melanogaster lives, breeds and feeds on fermenting fruit, an environment that supports a high density, and often a diversity, of microorganisms. This association with such dense microbe-rich environments has been proposed as a reason that D. melanogaster evolved a diverse and potent antimicrobial peptide (AMP) response to microorganisms, especially to combat potential pathogens that might occupy this niche. Yet, like most animals, D. melanogaster also lives in close association with the beneficial microbes that comprise its microbiota, or microbiome, and recent studies have shown that antimicrobial peptides (AMPs) of the epithelial immune response play an important role in dictating these interactions and controlling the host response to gut microbiota. Moreover, D. melanogaster also eats microbes for food, consuming fermentative microbes of decaying plant material and their by-products as both larvae and adults. The processes of nutrient acquisition and host defence are remarkably similar and use shared functions for microbe detection and response, an observation that has led to the proposal that the digestive and immune systems have a common evolutionary origin. In this manner, D. melanogaster provides a powerful model to understand how, and whether, hosts differentiate between the microbes they encounter across this spectrum of associations. This article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’.


2021 ◽  
Vol 12 ◽  
Author(s):  
Iines S. Salonen ◽  
Panagiota-Myrsini Chronopoulou ◽  
Hidetaka Nomaki ◽  
Dewi Langlet ◽  
Masashi Tsuchiya ◽  
...  

Foraminifera are unicellular eukaryotes that are an integral part of benthic fauna in many marine ecosystems, including the deep sea, with direct impacts on benthic biogeochemical cycles. In these systems, different foraminiferal species are known to have a distinct vertical distribution, i.e., microhabitat preference, which is tightly linked to the physico-chemical zonation of the sediment. Hence, foraminifera are well-adapted to thrive in various conditions, even under anoxia. However, despite the ecological and biogeochemical significance of foraminifera, their ecology remains poorly understood. This is especially true in terms of the composition and diversity of their microbiome, although foraminifera are known to harbor diverse endobionts, which may have a significant meaning to each species’ survival strategy. In this study, we used 16S rRNA gene metabarcoding to investigate the microbiomes of five different deep-sea benthic foraminiferal species representing differing microhabitat preferences. The microbiomes of these species were compared intra- and inter-specifically, as well as with the surrounding sediment bacterial community. Our analysis indicated that each species was characterized with a distinct, statistically different microbiome that also differed from the surrounding sediment community in terms of diversity and dominant bacterial groups. We were also able to distinguish specific bacterial groups that seemed to be strongly associated with particular foraminiferal species, such as the family Marinilabiliaceae for Chilostomella ovoidea and the family Hyphomicrobiaceae for Bulimina subornata and Bulimina striata. The presence of bacterial groups that are tightly associated to a certain foraminiferal species implies that there may exist unique, potentially symbiotic relationships between foraminifera and bacteria that have been previously overlooked. Furthermore, the foraminifera contained chloroplast reads originating from different sources, likely reflecting trophic preferences and ecological characteristics of the different species. This study demonstrates the potential of 16S rRNA gene metabarcoding in resolving the microbiome composition and diversity of eukaryotic unicellular organisms, providing unique in situ insights into enigmatic deep-sea ecosystems.


2004 ◽  
Vol 17 (2) ◽  
pp. 216-223 ◽  
Author(s):  
Luis Bolaños ◽  
Miguel Redondo-Nieto ◽  
Rafael Rivilla ◽  
Nicholas J. Brewin ◽  
Ildefonso Bonilla

Samples of Rhizobium bacteroids isolated from pea nodule symbiosomes reacted positively with a monoclonal antibody recognizing N-linked glycan epitopes on plant glycoproteins associated with the peribacteroid membrane and peribacteroid fluid. An antiserum recognizing the symbiosomal lectin-like glycoprotein PsNLEC-1 also reacted positively. Samples of isolated bacteroids also reacted with an antibody recognizing a glycolipid component of the peribacteroid membrane and plasma membrane. Bacterial cells derived from free-living cultures then were immobilized on nitrocellulose sheets and tested for their ability to associate with components of plant extracts derived from nodule fractionation. A positive antibody-staining reaction indicated that both PsNLEC-1 and membrane glycolipid had become associated with the bacterial surface. A range of rhizobial strains with mutants affecting cell surface polysaccharides all showed similar interactions with PsNLEC-1 and associated plant membranes, with the exception of strain B659 (a deep-rough lipopolysaccharide mutant of Rhizobium leguminosarum). However, the presence of a capsule of extracellular polysaccharide apparently prevented interactions between rhizobial cells and these plant components. The importance of a close association between peribacteroid membranes, PsNLEC-1, and the bacterial surface is discussed in the context of symbiosome development.


2013 ◽  
Vol 16 (6) ◽  
pp. 1612-1626 ◽  
Author(s):  
Matthias Winkel ◽  
Dirk de Beer ◽  
Gaute Lavik ◽  
Jörg Peplies ◽  
Marc Mußmann

2010 ◽  
Vol 57 (4) ◽  
pp. 621-627 ◽  
Author(s):  
Rachel M. Jeffreys ◽  
Marc S.S. Lavaleye ◽  
Magda J.N. Bergman ◽  
Gerard C.A. Duineveld ◽  
Rob Witbaard ◽  
...  

Genetika ◽  
2019 ◽  
Vol 51 (3) ◽  
pp. 1039-1052
Author(s):  
Milan Ivanovic ◽  
Nemanja Kuzmanovic ◽  
Katarina Gasic ◽  
Andjelka Prokic ◽  
Nevena Zlatkovic ◽  
...  

Three PCR methods, referred in this study as ?conventional?, ?nested? and ?chromosomal? PCR and suggested for routine detection of Erwinia amylovora in pure culture and plant material, were evaluated according to their specificity and sensitivity. Specificity of PCR methods was analyzed by using 42 strains of E. amylovora, originating from different locations and plant species, with diverse PFGE profiles, representing distant populations of the pathogen. Sensitivity of PCR protocols in pure culture was studied by using nine different concentrations of E. amylovora in sterile ultrapure water as a template in PCR reactions. In order to study inhibitory effect of plant DNA and other inhibitors on sensitivity of the three PCR methods bacterial dilutions were mixed with plant macerate of pear, apple and quince prior to the PCR reaction. In specificity assays, tested PCR protocols were able to detect all E. amylovora strains regardless of the host of the strain, its origin or PFGE group, indicating primer specificity. On the other hand, sensitivity among tested methods varied, depending on bacterial concentration and selected plant material used in the PCR. When working with pure cultures nested PCR showed the greatest sensitivity by detecting 1.9 bacterial cells per PCR reaction, followed by detection limit of 9.5 cells per PCR reaction with conventional PCR and 1.9?105 cells/PCR reaction with chromosomal PCR. In spiked samples plant inhibitors either did not affect or they decreased the sensitivity of the PCR reaction, depending on the protocol and/or type of plant macerate. In our experiments, inhibitors from pear and quince macerates did not affect sensitivity of nested PCR, while apple macerate reduced its sensitivity by a factor of 10. Conventional PCR protocol was able to detect 95 cells/PCR reaction in pear and apple macerate, but only 9.5?103 cells/PCR in quince macerate. Greatest decrease in sensitivity of the PCR method was observed in spiked samples with chromosomal PCR since bacterial DNA was not detected in each of the spiked samples. Our research shows that all three PCR protocols are specific for detection of E. amylovora, but nested PCR proved to be most sensitive when working with pure cultures and plant material.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3655 ◽  
Author(s):  
Andrew D. Thaler ◽  
William Saleu ◽  
Jens Carlsson ◽  
Thomas F. Schultz ◽  
Cindy L. Van Dover

Deep-sea hydrothermal vents in the western Pacific are increasingly being assessed for their potential mineral wealth. To anticipate the potential impacts on biodiversity and connectivity among populations at these vents, environmental baselines need to be established. Bathymodiolus manusensis is a deep-sea mussel found in close association with hydrothermal vents in Manus Basin, Papua New Guinea. Using multiple genetic markers (cytochrome C-oxidase subunit-1 sequencing and eight microsatellite markers), we examined population structure at two sites in Manus Basin separated by 40 km and near a potential mining prospect, where the species has not been observed. No population structure was detected in mussels sampled from these two sites. We also compared a subset of samples with B. manusensis from previous studies to infer broader population trends. The genetic diversity observed can be used as a baseline against which changes in genetic diversity within the population may be assessed following the proposed mining event.


Sign in / Sign up

Export Citation Format

Share Document