scholarly journals Biocontrol of the Food-Borne Pathogens Listeria monocytogenes and Salmonella enterica Serovar Poona on Fresh-Cut Apples with Naturally Occurring Bacterial and Yeast Antagonists

2006 ◽  
Vol 72 (2) ◽  
pp. 1135-1140 ◽  
Author(s):  
Britta Leverentz ◽  
William S. Conway ◽  
Wojciech Janisiewicz ◽  
Maribel Abadias ◽  
Cletus P. Kurtzman ◽  
...  

ABSTRACT Fresh-cut apples contaminated with either Listeria monocytogenes or Salmonella enterica serovar Poona, using strains implicated in outbreaks, were treated with one of 17 antagonists originally selected for their ability to inhibit fungal postharvest decay on fruit. While most of the antagonists increased the growth of the food-borne pathogens, four of them, including Gluconobacter asaii (T1-D1), a Candida sp. (T4-E4), Discosphaerina fagi (ST1-C9), and Metschnikowia pulcherrima (T1-E2), proved effective in preventing the growth or survival of food-borne human pathogens on fresh-cut apple tissue. The contaminated apple tissue plugs were stored for up to 7 days at two different temperatures. The four antagonists survived or grew on the apple tissue at 10 or 25°C. These four antagonists reduced the Listeria monocytogenes populations and except for the Candida sp. (T4-E4), also reduced the S. enterica serovar Poona populations. The reduction was higher at 25°C than at 10°C, and the growth of the antagonists, as well as pathogens, increased at the higher temperature.

Plant Disease ◽  
2000 ◽  
Vol 84 (2) ◽  
pp. 177-181 ◽  
Author(s):  
William S. Conway ◽  
Britta Leverentz ◽  
Robert A. Saftner ◽  
Wojciech J. Janisiewicz ◽  
Carl E. Sams ◽  
...  

The food-borne human pathogen Listeria monocytogenes survived and its populations increased on cv. Delicious apple slices at 10 or 20°C in air or controlled atmosphere of 0.5% O2 and 15% CO2, but did not grow at 5°C. Controlled atmosphere had no significant effect on the survival or growth of L. monocytogenes. The pathogen populations declined over time when grown in various concentrations of apple juice and the decline was greater as the concentration of the juice decreased. Populations of L. monocytogenes inoculated into decayed apple tissue continually increased on fruit decayed by Glomerella cingulata but did not survive after 5 days on fruit decayed by Penicillium expansum. The pH of the decayed area declined from pH 4.7 to 3.7 in the case of P. expansum, but in the case of G. cingulata the pH increased from pH 4.7 to 7.0. This pH modification may be responsible for affecting the growth of the food-borne pathogen. Storage temperature, as well as the absence of postharvest pathogens such as G. cingulata, is important for maintaining the safety of fresh-cut apples.


Author(s):  
Kai Chen ◽  
Biao Ma ◽  
Jiali Li ◽  
Erjing Chen ◽  
Ying Xu ◽  
...  

Food-borne pathogens have become an important public threat to human health. There are many kinds of pathogenic bacteria in food consumed daily. A rapid and sensitive testing method for multiple food-borne pathogens is essential. Europium nanoparticles (EuNPs) are used as fluorescent probes in lateral flow immunoassays (LFIAs) to improve sensitivity. Here, recombinase polymerase amplification (RPA) combined with fluorescent LFIA was established for the simultaneous and quantitative detection of Listeria monocytogenes, Vibrio parahaemolyticus, and Escherichia coliO157:H7. In this work, the entire experimental process could be completed in 20 min at 37 °C. The limits of detection (LODs) of EuNP-based LFIA–RPA were 9.0 colony-forming units (CFU)/mL for Listeria monocytogenes, 7.0 CFU/mL for Vibrio parahaemolyticus, and 4.0 CFU/mL for Escherichia coliO157:H7. No cross-reaction could be observed in 22 bacterial strains. The fluorescent LFIA–RPA assay exhibits high sensitivity and good specificity. Moreover, the average recovery of the three food-borne pathogens spiked in food samples was 90.9–114.2%. The experiments indicate the accuracy and reliability of the multiple fluorescent test strips. Our developed EuNP-based LFIA–RPA assay is a promising analytical tool for the rapid and simultaneous detection of multiple low concentrations of food-borne pathogens.


Nematology ◽  
2015 ◽  
Vol 17 (4) ◽  
pp. 447-457 ◽  
Author(s):  
Yulia Kroupitski ◽  
Riky Pinto ◽  
Patricia Bucki ◽  
Edward Belausov ◽  
Liliane Ruess ◽  
...  

The objective of the present study was to assess ifAcrobeloides buetschlii, an opportunistic species common across many soils, can be employed as a suitable model for interactions between free-living soil nematodes and enteric human pathogens.Acrobeloides buetschliiwas exposed to mCherry-taggedSalmonella entericaandEscherichia coliO157:H7 and its vector potential was assessed.Salmonellacells were more readily ingested by the nematodes compared toE. coliO157:H7. Adult nematodes ingested more bacteria compared to juveniles.Salmonellasurvived internally for at least 7 days without affecting the viability of nematodes. Bacterial ingestion byA. buetschliidid not vary for three testedSalmonellaserovars but was significantly lower forE. coliO157:H7. Considering the ubiquitous nature of pathogen and vector, these findings suggest thatA. buetschliican serve as a relevant model for studying nematode-Salmonellainteractions in an agricultural setting and as potential transport for food-borne pathogens from soil to crops.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. e00540-18 ◽  
Author(s):  
Callum J. Highmore ◽  
Jennifer C. Warner ◽  
Steve D. Rothwell ◽  
Sandra A. Wilks ◽  
C. William Keevil

ABSTRACTThe microbiological safety of fresh produce is monitored almost exclusively by culture-based detection methods. However, bacterial food-borne pathogens are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses such as chlorine, which is commonly used for fresh produce decontamination. Here, complete VBNC induction of green fluorescent protein-taggedListeria monocytogenesandSalmonella entericaserovar Thompson was achieved by exposure to 12 and 3 ppm chlorine, respectively. The pathogens were subjected to chlorine washing following incubation on spinach leaves. Culture data revealed that total viableL. monocytogenesandSalmonellaThompson populations became VBNC by 50 and 100 ppm chlorine, respectively, while enumeration by direct viable counting found that chlorine caused a <1-log reduction in viability. The pathogenicity of chlorine-induced VBNCL. monocytogenesandSalmonellaThompson was assessed by usingCaenorhabditis elegans. Ingestion of VBNC pathogens byC. elegansresulted in a significant life span reduction (P= 0.0064 andP< 0.0001), and no significant difference between the life span reductions caused by the VBNC and culturableL. monocytogenestreatments was observed.L. monocytogeneswas visualized beyond the nematode intestinal lumen, indicating resuscitation and cell invasion. These data emphasize the risk that VBNC food-borne pathogens could pose to public health should they continue to go undetected.IMPORTANCEMany bacteria are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses. VBNC cells cannot be detected by standard laboratory culture techniques, presenting a problem for the food industry, which uses these techniques to detect pathogen contaminants. This study found that chlorine, a sanitizer commonly used for fresh produce, induces a VBNC state in the food-borne pathogensListeria monocytogenesandSalmonella enterica. It was also found that chlorine is ineffective at killing total populations of the pathogens. A life span reduction was observed inCaenorhabditis elegansthat ingested these VBNC pathogens, with VBNCL. monocytogenesas infectious as its culturable counterpart. These data show that VBNC food-borne pathogens can both be generated and avoid detection by industrial practices while potentially retaining the ability to cause disease.


2013 ◽  
Vol 79 (15) ◽  
pp. 4613-4619 ◽  
Author(s):  
Patrick Studer ◽  
Werner E. Heller ◽  
Jörg Hummerjohann ◽  
David Drissner

ABSTRACTSprouts contaminated with human pathogens are able to cause food-borne diseases due to the favorable growth conditions for bacteria during germination and because of minimal processing steps prior to consumption. We have investigated the potential of hot humid air, i.e., aerated steam, to treat alfalfa and mung bean seeds which have been artificially contaminated withEscherichia coliO157:H7,Salmonella entericasubsp.entericaserovar Weltevreden, andListeria monocytogenesScott A. In addition, a recently collectedE. coliO178:H12 isolate, characterized by a reduced heat sensitivity, was exposed to the treatment described. Populations ofE. coliO157:H7 andS. entericaon alfalfa and mung bean seeds could be completely eliminated by a 300-s treatment with steam at 70 ± 1°C as revealed by enrichment studies.L. monocytogenesandE. coliO178:H12 could not be completely eliminated from artificially inoculated seeds. However, bacterial populations were reduced by more than 5 log CFU/g on alfalfa and by more than 4 log CFU/g on mung bean seeds. The germination rate of mung beans was not affected by the 300-s treatment compared to the germination rate of untreated seeds whereas that of alfalfa seeds was significantly lower by 11.9%. This chemical-free method is an effective alternative to the 20,000-ppm hypochlorite treatment presently recommended by the U.S. Food and Drug Administration (FDA).


2018 ◽  
Vol 146 ◽  
pp. 1-8 ◽  
Author(s):  
Haiyan Gao ◽  
Shiyuan Wu ◽  
Qing Zeng ◽  
Peizhong Li ◽  
Wenqiang Guan

Sign in / Sign up

Export Citation Format

Share Document