scholarly journals Generation of Feline Dendritic Cells Derived from Peripheral Blood Monocytes for In Vivo Use

2005 ◽  
Vol 12 (10) ◽  
pp. 1202-1208 ◽  
Author(s):  
Giulia Freer ◽  
Donatella Matteucci ◽  
Paola Mazzetti ◽  
Leonia Bozzacco ◽  
Mauro Bendinelli

ABSTRACT Dendritic cells (DCs) are professional antigen-presenting cells that can prime T cells and polarize the cellular immune response. Because Th1-type immune responses have been connected to success in combating viral infection, a promising therapeutic application of DCs would be their differentiation in vitro and injection back into the host to boost an immune response in infected animals. This study was aimed both at developing a protocol to cultivate feline DCs in the absence of exogenous proteins for their use in vivo and at investigating what might be the most appropriate stimulus to induce their maturation in vitro and finding correlates of maturation. We generated DCs from peripheral blood monocytes in the presence of feline interleukin-4 and granulocyte-macrophage colony stimulating factor, and after 5 days their maturation was induced with either lipopolysaccharide, human recombinant tumor necrosis factor alpha, poly(I:C), or activated feline platelets. After 48 h, their CD14, CD1a, major histocompatibility complex class II, and B7.1 surface expression was analyzed in parallel with their ability to uptake antigen or prime a mixed leukocyte reaction. The results presented show that feline DCs cultured in autologous plasma differentiate and are able to mature in the presence of stimuli similar to the ones currently used for other species. The present work sets the grounds for future use of DCs obtained by the protocol described for in vivo vaccination and immunotherapy of feline immunodeficiency virus-infected cats.

Author(s):  
Bahare Keshavarzi ◽  
Meraj Tabatabaei ◽  
Amir Hasan Zarnani ◽  
Fahime Ramezani Tehrani ◽  
Mahmood Bozorgmehr ◽  
...  

Background: The amniotic membrane plays an important role in maintaining a healthy pregnancy. The main population cells from amniotic membrane include human amnion epithelial cells (hAECs) which have been shown to possess immunomodulatory properties. Objective: The proximity of hAECs with monocyte leads to the generation of tollerogenic dendritic cells. Materials and Methods: hAECs were obtained from normal pregnancy. Peripheral blood monocytes were isolated by anti-CD14 MACS method. Co-cultures of monocytes and hAECs were established in Transwell chambers supplemented with granulocytemacrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) in the absence and presence of lipopolysaccharide (LPS) to produce immature and mature DCs, respectively. Immunophenotyping of the obtained DCs was done through flow cytometry and the production of cytokines was measured by ELISA. Mixed leukocyte Reaction (MLR) was also performed for the functional assessment of DCs. Results: Immunophenotyping of [hAECs - Immature DC (iDC)] and [hAECs - iDC] + LPS cells revealed that the expression of CD1a, CD80, CD86, CD40, HLA-DR, and CD83 markers showed no significant difference as compared with the control group (iDCs and mDCs alone). In the [hAECs-iDCs] + LPS cells, the percentage of CD14 cells at the ratio of 1:2.5 showed significant differences compared to the control group. The production of IL-10 and IL-12 showed no significant difference in any of the cultures as compared to the control groups. Also, co-cultured DCs did not inhibit proliferation of lymphocyte. Conclusion: Our findings show that factors secreted from cultured hAECs are unable to generate of tollerogenic dendritic cells. To achieve a better understanding of other mechanisms more investigations are needed. Key words: Amniotic membrane, Dendritic cells, Human placenta, Immunomodulation, Monocyte.


Author(s):  
Dan Smelter ◽  
Mary Hayney ◽  
George Sakoulas ◽  
Warren Rose

Cefazolin and ertapenem has been shown to be an effective salvage regimen for refractory methicillin-susceptible Staphylococcus aureus bacteremia. Our findings suggest cefazolin plus ertapenem in vitro stimulates interleukin-1β release from peripheral blood monocytes both with and without S. aureus presence. This IL-1β augmentation was primarily driven by ertapenem. These findings support further exploration of cefazolin plus ertapenem in MSSA bacteremia and may partially explain its marked potency in vivo despite modest synergy in vitro .


AIDS ◽  
2001 ◽  
Vol 15 (8) ◽  
pp. 945-955 ◽  
Author(s):  
Katherine Kedzierska ◽  
Johnson Mak ◽  
Anthony Jaworowski ◽  
Alison Greenway ◽  
Antoniette Violo ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Ludmila V. Sakhno ◽  
Ekaterina Ya. Shevela ◽  
Marina A. Tikhonova ◽  
Sergey D. Nikonov ◽  
Alexandr A. Ostanin ◽  
...  

The phenotype and functional properties of antigen-presenting cells (APC), that is, circulating monocytes and generatedin vitromacrophages and dendritic cells, were investigated in the patients with pulmonary tuberculosis (TB) differing in lymphocyte reactivity toM. tuberculosisantigens (PPD-reactive versus PPD-anergic patients). We revealed the distinct impairments in patient APC functions. For example, the monocyte dysfunctions were displayed by low CD86 and HLA-DR expression, 2-fold increase in CD14+CD16+expression, the high numbers of IL-10-producing cells, and enhanced IL-10 and IL-6 production upon LPS-stimulation. The macrophages which werein vitrogenerated from peripheral blood monocytes under GM-CSF were characterized by Th1/Th2-balance shifting (downproduction of IFN-γcoupled with upproduction of IL-10) and by reducing of allostimulatory activity in mixed lymphocyte culture. The dendritic cells (generatedin vitrofrom peripheral blood monocytes upon GM-CSF + IFN-α) were characterized by impaired maturation/activation, a lower level of IFN-γproduction in conjunction with an enhanced capacity to produce IL-10 and IL-6, and a profound reduction of allostimulatory activity. The APC dysfunctions were found to be most prominent in PPD-anergic patients. The possible role of APC impairments in reducing the antigen-specific T-cell response toM. tuberculosiswas discussed.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4642-4642 ◽  
Author(s):  
Hironori Yoshino ◽  
Kenji Takahashi ◽  
Ikuo Kashiwakura

Abstract Dendritic cells (DCs) are a type of antigen-presenting cell which play an essential role in the immune system. The transition from immature DC (iDCs) to mature DCs (mDCs) requires maturation stimuli, such as pro-inflammatory cytokines or pathogen-derived components. Proteoglycans (PGs) are one of main components of the extracellular matrix and are composed of core proteins and glycosaminoglycans that bind to the core proteins. PGs are also constituent elements of bacteria and the role of PGs in the stimulation of DCs has not been elucidated. This study investigated the effects of PGs extracted from the nasal cartilage of a salmon head (S-PG) and the nasal septum cartilage of a whale (W-PG) on the maturation of DCs derived from human peripheral blood monocytes. This study was approved by the Committee of Medical Ethics of Hirosaki University School of Medicine. The human peripheral blood mononuclear cells (PBMCs) were separated from the buffy coat. Furthermore, the monocytes were separated from the PBMCs by allowing them to adhere to a plastic dish. To prepare iDCs, the monocytes were cultured in the presence of 50 ng/ml rhGM-CSF and rhIL-4 for 5 days. The iDCs were stimulated by S-PG or W-PG for 4 days to investigate whether the PGs alone were able to induce the maturation of DCs. In addition, other iDCs were stimulated by a cytokine mixture (rhTNF-α, rhIL-1β, rhIL- 6 and PGE2: MIX) or a combination of MIX+S-PG or W-PG for 48 hours. The surface phenotype of the DCs was analyzed by flow cytometry and the matrix metalloproteinase-9 (MMP-9) activity in the culture supernatants was assayed by zymography. Furthermore, the functions of DCs stimulated by a combination of MIX+S-PG or MIX+W-PG were examined. When the iDCs were stimulated by either S-PG or W-PG alone, the PGs-stimulated DCs did not express the DC-maturation marker CD83, thus indicating that S-PG and W-PG alone could not induce the maturation of DCs. However, the CCR5 expression on DCs stimulated by W-PG was down-regulated. When DCs were stimulated by MIX + 100 μg/ml W-PG, an up-regulation of CCR7 expression was observed. In association with the up-regulation of CCR7 expression, the stimulation by MIX+W-PG actually enhanced the chemotactic responsiveness of DCs to CCR7 ligand MIP-3β. These effects were not observed in the combination of MIX+S-PG. The MMP-9 activity was next examined by zymography, because the degradation of extracellular matrix by MMPs is required for DCs migration. However, neither S-PG nor W-PG promoted MMP-9 secretion. The present study therefore demonstrates that W-PG not but S-PG can selectively regulate the chemotactic activity of DCs in vitro. Further understanding of the mechanism and studies using human PGs is therefore expected to provide valuable insight into the migration of immune cells, including DCs both in vitro and in vivo.


Blood ◽  
2009 ◽  
Vol 113 (3) ◽  
pp. 671-674 ◽  
Author(s):  
Xu Wang ◽  
Li Ye ◽  
Wei Hou ◽  
Yu Zhou ◽  
Yan-Jian Wang ◽  
...  

AbstractAlthough both monocytes and macrophages possess essential requirements for HIV-1 entry, peripheral blood monocytes are infrequently infected with HIV-1 in vivo and in vitro. In contrast, tissue macrophages and monocyte-derived macrophages in vitro are highly susceptible to infection with HIV-1 R5 tropic strains. We investigated intracellular anti–HIV-1 factors that contribute to differential susceptibility of monocytes/macrophages to HIV-1 infection. Freshly isolated monocytes from peripheral blood had significantly higher levels of the anti–HIV-1 microRNAs (miRNA, miRNA-28, miRNA-150, miRNA-223, and miRNA-382) than monocyte-derived macrophages. The suppression of these anti–HIV-1 miRNAs in monocytes facilitates HIV-1 infectivity, whereas increase of the anti–HIV-1 miRNA expression in macrophages inhibited HIV-1 replication. These findings provide compelling and direct evidence at the molecular level to support the notion that intracellular anti–HIV-1 miRNA-mediated innate immunity may have a key role in protecting monocytes/macrophages from HIV-1 infection.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yousri M. Hussein ◽  
Doaa M. Hendawy ◽  
Abdalrahman N. Alghamdy ◽  
Nermin Raafat

Abstract Background Dendritic cells (DCs) recognize different pathogens and cancer cells and activate the adaptive immune response. The generation of effective DC-based cancer vaccines depends on the appropriate differentiation of monocytes in vitro. This study aimed to standardize a protocol for the in vitro differentiation of human peripheral blood monocytes into immature DCs upon treatment with growth factors and generate monocyte-derived DCs (MoDCs). Peripheral blood mononuclear cells were separated from peripheral blood. After monocyte enrichment by plastic adhesion, monocytes were cultured for 6 days in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 to generate immature DCs. The cells were examined by microscopy. Using flow cytometry, DCs were evaluated for the expression of the CD83 and HLA-DR surface antigens, for the uptake of fluorescein isothiocyanate conjugated dextran, and also for the expression of CD80 and CD86 mRNA. Results CD80 and CD86 genes expression was upregulated at day six and exhibited a significant difference (P < 0.05). DCs showed positive expression of the CD83 and HLA-DR surface antigens by flow cytometry and FITC-conjugated dextran uptake. Conclusion This study represents a preliminary trial to generate immature MoDCs in vitro from blood monocytes collected by the flask adherence method. It offers a panel of surface markers for DCs characterization and provides Immature DCs for experimental procedures after 6 incubation days.


Sign in / Sign up

Export Citation Format

Share Document