scholarly journals A New Cell Enzyme-Linked Immunosorbent Assay Demonstrates Gamma Interferon Suppression by Beta Interferon in Multiple Sclerosis

1999 ◽  
Vol 6 (3) ◽  
pp. 415-419 ◽  
Author(s):  
Moiz Bakhiet ◽  
Volkan Özenci ◽  
Carin Withagen ◽  
Maha Mustafa ◽  
Sten Fredrikson ◽  
...  

ABSTRACT Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system of unknown etiology. Immune mechanisms involving the proinflammatory cytokine gamma interferon (IFN-γ) are believed to play an important role in the pathogenesis of MS. IFN-β-1b has been introduced as a treatment for MS and was found to reduce the number and severity of clinical exacerbations. To examine the influence of IFN-β-1b on myelin basic protein (MBP)-specific and phytohemagglutinin-induced IFN-γ production, we developed a cell-released capturing enzyme-linked immunosorbent assay (CRC-ELISA), which rapidly measures spontaneous and antigen- or mitogen-induced cellular IFN-γ production. CRC-ELISA documented a significant MBP-specific T-cell response in the blood of untreated MS patients, as assessed by IFN-γ production. This response was suppressed in MS patients treated with IFN-β-1b. The present work confirms in vivo the in vitro suppressive effects of IFN-β-1b on IFN-γ production in MS. Moreover, it provides a powerful new technique for detection of cytokines.

2005 ◽  
Vol 12 (12) ◽  
pp. 1437-1441 ◽  
Author(s):  
R. Sghiri ◽  
J. Feinberg ◽  
F. Thabet ◽  
K. Dellagi ◽  
J. Boukadida ◽  
...  

ABSTRACT Previous studies have indicated that neopterin is synthesized in vitro by human monocyte-derived macrophages and dendritic cells upon stimulation with gamma interferon (IFN-γ). Neopterin production under specific conditions in vitro has also been obtained upon stimulation with IFN-α and/or IFN-β. However, it is unknown if any IFN-γ-independent neopterin synthesis is possible in vivo. In the present study we investigated the serum neopterin concentrations in patients affected by the syndrome of Mendelian susceptibility to mycobacterial disease (MSMD). Indeed, this syndrome is characterized by deeply impaired or absent IFN-γ production or function due to severe mutations in molecules involved in IFN-γ/interleukin-12 (IL-12)/IL-23-dependent pathway. Serum neopterin levels were measured by an enzyme-linked immunosorbent assay in 27 patients with MSMD. We found that serum neopterin levels are elevated in the complete absence of IFN-γ activity due either to a complete deficiency of its receptor or to deleterious mutations of IL-12 or its receptor. These data clearly indicate that, as reported from in vitro studies, other stimuli are able to induce neopterin synthesis in vivo. Consequently, neopterin cannot be used as means of diagnosis of MSMD due to IFN-γ-, IL-12-, and IL-23-dependent pathway defects.


2012 ◽  
Vol 25 (5) ◽  
pp. 607-619 ◽  
Author(s):  
Thacianna Barreto da Costa ◽  
Natália Gomes de Morais ◽  
Thays Miranda de Almeida ◽  
Maiara Santos Severo ◽  
Célia Maria Machado Barbosa de Castro

OBJETIVO: Avaliar a influência da desnutrição neonatal sobre a produção de Interferon gama, Interleucina-12 e Interleucina-10 em cultura de macrófagos alveolares e linfócitos infectados, in vitro, com Staphylococcus aureus sensível/resistente à meticilina. MÉTODOS: Ratos machos Wistar foram amamentados por mães cuja dieta, durante a lactação, continha 17% de proteína no grupo nutrido e 8% no grupo desnutrido. Após desmame, ambos os grupos receberam a dieta normoproteica. Os macrófagos foram obtidos após traqueostomia, através da coleta do lavado broncoalveolar. Para obtenção dos linfócitos, foi realizado o procedimento cirúrgico de punção cardíaca. Após o isolamento dos diferentes tipos celulares, procedeuse à realização dos estímulos com as cepas de estudo. A dosagem das citocinas foi realizada pelo método de Enzyme-Linked Immunosorbent Assay, a partir de amostras coletadas do sobrenadante das culturas após 24 horas de incubação. RESULTADOS: A desnutrição acarretou diminuição do crescimento ponderal, redução na produção de Interferon gama em cultura de macrófagos alveolares e linfócitos e diminuição na produção de Interleucina-12 em cultura de macrófagos alveolares. Apenas a produção de Interferon gama e Interleucina-10 em cultura de macrófagos alveolares apresentou diferença entre as cepas analisadas, em ambos os grupos estudados. CONCLUSÃO: O modelo de desnutrição neonatal produziu sequela no peso corporal e reduziu a produção de citocinas próinflamatórias (Interleucina-12 e Interferon gama), indicando que esse modelo de desnutrição pode comprometer a resolução de um processo infeccioso. A cepa de Staphylococcus aureus resistente à meticilina estimulou uma maior produção de Interferon gama e Interleucina-10 por macrófagos alveolares, o que sugeriu estimulação imunológica mais intensa, por essa cepa, nesse tipo celular especificamente.


1998 ◽  
Vol 5 (4) ◽  
pp. 531-536 ◽  
Author(s):  
Nuket Desem ◽  
Stephen L. Jones

ABSTRACT A sensitive two-step simultaneous enzyme immunoassay (EIA) for human gamma interferon (IFN-γ) has been developed and used as an in vitro test for human tuberculosis (TB) in comparison with tuberculin skin testing. The EIA was shown to be highly sensitive, detecting less than 0.5 IU of recombinant human IFN-γ per ml within a linear detection range of 0.5 to 150 IU/ml. The assay was highly reproducible and specific for native IFN-γ. In addition, the assay detected chimpanzee, orangutan, gibbon, and squirrel monkey IFN-γs. Cross-reactions with other human cytokines or with IFN-γs derived from mice, cattle, or Old World monkeys were not evident. The assay was used to detect TB infection by incubating whole blood overnight with human, avian, and bovine tuberculin purified protein derivatives (PPDs), as well as positive (mitogen)- and negative-control preparations. The levels of IFN-γ in plasma supernatants were then determined. Blood from 10 tuberculin skin test-positive individuals responded predominantly to the human tuberculin PPD antigen and to a lesser extent to bovine and avian PPD antigens. By contrast, blood from 10 skin test-negative individuals showed minimal responses or no response to any of the tuberculin PPDs. Detectable levels of IFN-γ were present in all blood samples stimulated with mitogen. In vivo tuberculin reactivity was correlated with IFN-γ responsiveness in vitro. These results support the further study of the blood culture–IFN-γ EIA system as an alternative to skin testing for the detection of human TB infection.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2346-2346
Author(s):  
Barry R Flutter ◽  
Farnaz Fallah-Arani ◽  
Clare Bennett ◽  
Janani Sivakumaran ◽  
Gordon J Freeman ◽  
...  

Abstract T cell immunotherapies for cancer should ideally generate high levels of anti-tumor activity, with minimal host injury and permit the prolonged survival of functional memory/effector cells to prevent tumor recurrence. Following allogeneic stem cell transplantation, delayed donor leukocyte infusion (DLI) is one strategy employed to induce graft-versus-leukemia (GVL) responses while limiting the risk of host injury in terms of graft-versus-host disease. However, patients remain at significant risk of relapse following DLI and murine models of delayed DLI indicate that this results from the eventual loss of functional, alloreactive cytotoxic T lymphocytes (CTL) [Mapara et al. Transplantation 2003]. We hypothesised that the loss of functional CTL is driven by persistent stimulation of donor CD8 cells by alloantigen expressed by peripheral tissues. In order to follow and characterise an alloreactive CD8 response under conditions in which alloantigen was present or absent in peripheral tissues, we employed a model in which either parental B6 (H2b) or B6 x DBA-2 F1 (BDF1, H2dxb) mice were lethally irradiated and reconstituted with a mixture of B6 and BDF1 T cell depleted bone marrow. 8-10 weeks later congenic CD45.1 B6 splenocytes were transferred into the established mixed chimeras. This allowed us to test the importance of peripheral antigen in the loss of alloreactive CTL responses, since alloantigen was either restricted to the hematopoietic system (B6 +BDF1 → B6) or was ubiquitously expressed (B6 +BDF1 → BDF1). Following transfer of CD45.1 B6 splenocytes, the ensuing alloantigenspecific T cell response in both groups led to the elimination of alloantigen-positive (BDF1-derived) hematopoietic elements. Thereafter, alloreactive CD8 cells resided in an environment in which peripheral alloantigen was present (PA+) or absent (PA-). We observed similar kinetics of initial CD45.1+ CD8 cell proliferation and expansion and similar acquisition of a CD44highCD62Llow phenotype. However, by day 60, there were striking differences in the phenotype and function of transferred CD8 cells. In PA- hosts, CD45.1+ CD8 cells killed allogeneic target cells effectively both in vitro and in vivo, underwent rapid proliferation in a mixed leukocyte reaction and produced the effector cytokine, IFN-γ. In contrast CD45.1+ CD8 cells from PA+ hosts had little or no cytotoxic activity, did not proliferate to alloantigen and were IFN-γlow. Moreover, CD45.1+ CD8 cells from PA+ hosts displayed high levels of the co-inhibitory receptor PD-1, low levels of the IL-7Rα chain and responded poorly to IL-7 and IL-15 in vitro, a phenotype typical of the ‘exhaustion’ signature observed in CTL following chronic antigen exposure. In comparison, CD45.1+ CD8 cells from PA- hosts expressed significantly lower levels of PD-1, higher levels of IL-7Rα and demonstrated better responsiveness to IL-7 and IL-15 in vitro. In vitro PD-1 or PD-L1 blockade restored IFN-γ generation to CD45.1+ CD8 cells from PA+ hosts, suggesting that the PD-1 pathway may play a functional role in driving exhaustion of these cells. Importantly we observed no loss of long-term alloreactive CD4 responses in either PA+ or PA- hosts. This finding is consistent with a model in which peripheral alloantigen drives exhaustion since the majority of cells expressing Class II alloantigens in PA+ and PA- hosts would be restricted to the hematopoietic system and thus, would have been cleared in the initial alloresponse. The full exhausted phenotype of alloreactive CD8 cells described above was not seen until at least 30 days after transfer to PA+ hosts. However, as early as day 14, CTL primed in PA+ hosts produced less IFN-γ in comparison to those primed in PA-hosts, even though they were still equivalent in terms of their cytotoxicity. Furthermore, when CD8 cells primed in PA+ hosts were transferred to secondary antigen-free hosts, they still displayed reduced ‘fitness’ compared to CTL originally primed in PA- hosts. These data show that peripheral alloantigen qualitatively affects donor CTL function during priming and drives their eventual exhaustion. Additionally they suggest that blockade of co-inhibitory signals may have potential in restoring function to such cells as has been demonstrated in models of chronic infection.


2007 ◽  
Vol 51 (6) ◽  
pp. 2112-2116 ◽  
Author(s):  
Pierre Druilhe ◽  
Philippe Brasseur ◽  
Catherine Blanc ◽  
Michael Makler

ABSTRACT The occurrence of Plasmodium vivax resistance to chloroquine has been reported in several countries of Asia and South America. However, the resistance of P. vivax is insufficiently documented for three reasons: it has received far less attention than P. falciparum; in vivo investigations are handicapped by the existence of hypnozoites, which make it difficult to distinguish between recrudescences due to drug failure and relapses due to dormant forms in the liver; and in vitro studies are greatly limited by the poor growth of P. vivax. We report on the adaptation to P. vivax of a colorimetric double-site Plasmodium lactate dehydrogenase antigen capture enzyme-linked immunosorbent assay previously developed for P. falciparum. The assay proved remarkably sensitive, as under optimal conditions it could detect P. vivax parasitemia levels as low as 10−8. The technique, which relies on the detection of protein synthesis by the parasite, yielded steep drug-response curves, leading to the precise determination of the 50% inhibitory concentrations for a high proportion of isolates. Chloroquine-resistant parasites were identified in an area where this phenomenon had been documented by in vivo methods. Thus, the results indicate that the in vitro susceptibility of P. vivax can now be monitored easily and efficiently. The data suggest that the threshold of resistance is similar to that of P. falciparum, i.e., in the range of 100 nM for chloroquine and 15 nM for pyronaridine. However, further studies are required to precisely define the cutoff for resistance and the sensitivity to each drug.


2011 ◽  
Vol 18 (7) ◽  
pp. 1150-1156 ◽  
Author(s):  
Martine G. Aabye ◽  
Pernille Ravn ◽  
Isik S. Johansen ◽  
Jesper Eugen-Olsen ◽  
Morten Ruhwald

ABSTRACTA rarely challenged dogma in cell-mediated immune (CMI) assays is the incubation temperature, 37°C. Fever augments proinflammatory immune responsesin vivo, and the aim of this study was to explore whether incubation at fever-range temperature could increase antigen-specific biomarker responses. We compared CMI responses following incubation of whole blood at 37°C and 39°C. Whole blood was obtained from (i) 34 healthy subjects whose blood was incubated with TB10.4 antigen, present in theMycobacterium bovisbacillus Calmette-Guérin vaccine and many environmental mycobacteria; (ii) 8 TB patients and 8 controls incubated withMycobacterium tuberculosis-specific antigens in the QuantiFERON-TB Gold test (QFT-IT); and (iii) from both groups incubated with a T cell mitogen. T cell responses (gamma interferon [IFN-γ]) and responses from antigen-presenting cells (IFN-γ-induced protein 10 [IP-10]) were determined. We further evaluated the effect of adding interleukin-7 (IL-7) and blocking IL-10 during incubation. In TB patients, IFN-γ and IP-10 levels were increased 4.1- and 3.4-fold, respectively, at 39°C incubation (P< 0.001). Similar results were seen after mitogen stimulation. In subjects responding to TB10.4, the effects were less pronounced and significant only for IP-10. Incubation at 39°C increased IP-10 and IFN-γ responsiveness to both antigens and mitogen in persons with baseline or initial low responses. Adding IL-7 and blocking IL-10 augmented the effects in synergy with fever-range temperature. Incubation at fever-range temperature vividly increases CMI responsiveness to antigen stimulationin vitroin tuberculosis patients and may increase the sensitivity of CMI assays.


2002 ◽  
Vol 9 (2) ◽  
pp. 230-235 ◽  
Author(s):  
Christophe Dercamp ◽  
Violette Sanchez ◽  
Julie Barrier ◽  
Emanuelle Trannoy ◽  
Bruno Guy

ABSTRACT In order to study the respective roles of CD4, CD8, and CD56 (NK) cells in gamma interferon (IFN-γ) production after in vitro stimulation with flu vaccine in a healthy adult human population, we depleted these cellular subtypes before stimulation with antigen (inactivated split vaccine, A/Texas H1N1, or A/Sydney H3N2). We observed that while CD4 cells were required for IFN-γ secretion in both conditions in vitro, CD56 (NK) cells and, to a lesser extent, CD8 cells had a negative effect on such synthesis upon H1N1 stimulation, as judged by an increased number of spots compared to the initial undepleted population. This regulation of IFN-γ secretion was associated with an increase in ICAM-1 expression, in particular on T and B cells. This study points out the importance of evaluating in vitro immune responses on a whole-cell population in addition to isolated subtypes if one needs to address potential cellular interactions occurring in vivo in some situations (H1N1 stimulation in the present case). Such cross-regulations occur even in vitro during the antigenic stimulation step.


2001 ◽  
Vol 75 (5) ◽  
pp. 2107-2118 ◽  
Author(s):  
Ting Liu ◽  
Thomas J. Chambers

ABSTRACT Viral encephalitis caused by neuroadapted yellow fever 17D virus (PYF) was studied in parental and gamma interferon (IFN-γ)-deficient (IFN-γ knockout [GKO]) C57BL/6 mice. The T-cell responses which enter the brain during acute fatal encephalitis of nonimmunized mice, as well as nonfatal encephalitis of immunized mice, were characterized for relative proportions of CD4+ and CD8+cells, their proliferative responses, and antigen-specific expression of cytokines during stimulation in vitro. Unimmunized mice accumulated only low levels of T cells within the brain during fatal disease, whereas the brains of immunized mice contained higher levels of both T-cell subsets in response to challenge, with CD8+ cells increased relative to the CD4+ subset. The presence of T cells correlated with the time at which virus was cleared from the central nervous system in both parental and GKO mice. Lymphocytes isolated from the brains of challenged immunized mice failed to proliferate in vitro in response to T-cell mitogens or viral antigens; however, IFN-γ, interleukin 4 (IL-4), and, to a lesser extent, IL-2 were detectable after stimulation. The levels of IFN-γ, but not IL-2 or IL-4, were augmented in response to viral antigen, and this specificity was detectable in the CD4+ compartment. When tested for the ability to survive both immunization and challenge with PYF virus, GKO and CD8 knockout mice did not differ from parental mice (80 to 85% survival), although GKO mice exhibited a defect in virus clearance. In contrast, CD4 knockout and Igh-6 mice were unable to resist challenge. The data implicate antibody in conjunction with CD4+ lymphocytes bearing a Th1 phenotype as the critical factors involved in virus clearance in this model.


2001 ◽  
Vol 69 (12) ◽  
pp. 7453-7460 ◽  
Author(s):  
M. M. L. Pompeu ◽  
C. Brodskyn ◽  
M. J. Teixeira ◽  
J. Clarêncio ◽  
J. Van Weyenberg ◽  
...  

ABSTRACT The initial encounter of Leishmania cells and cells from the immune system is fundamentally important in the outcome of infection and determines disease development or resistance. We evaluated the anti-Leishmania amazonensis response of naive volunteers by using an in vitro priming (IVP) system and comparing the responses following in vivo vaccination against the same parasite. In vitro stimulation allowed us to distinguish two groups of individuals, those who produced small amounts of gamma interferon (IFN-γ) (n = 16) (low producers) and those who produced large amounts of this cytokine (n = 16) (high producers). IFN-γ production was proportional to tumor necrosis factor alpha and interleukin 10 (IL-10) levels but did not correlate with IL-5 production. Volunteers who produced small amounts of IFN-γ in vitro remained low producers 40 days after vaccination, whereas high producers exhibited increased IFN-γ production. However, 6 months after vaccination, all individuals tested produced similarly high levels of IFN-γ upon stimulation of their peripheral blood mononuclear cells with Leishmania promastigotes, indicating that low in vitro producers respond slowly in vivo to vaccination. In high IFN-γ producers there was an increased frequency of activated CD8+ T cells both in vitro and in vivo compared to the frequency in low producers, and such cells were positive for IFN-γ as determined by intracellular staining. Such findings suggest that IVP responses can be used to predict the pace of postvaccination responses of test volunteers. Although all vaccinated individuals eventually have a potent anti-Leishmania cell-mediated immunity (CMI) response, a delay in mounting the CMI response may influence resistance against leishmaniasis.


Sign in / Sign up

Export Citation Format

Share Document