scholarly journals Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-ResistantPseudomonas aeruginosaInfections

2019 ◽  
Vol 32 (4) ◽  
Author(s):  
Juan P. Horcajada ◽  
Milagro Montero ◽  
Antonio Oliver ◽  
Luisa Sorlí ◽  
Sònia Luque ◽  
...  

SUMMARYIn recent years, the worldwide spread of the so-called high-risk clones of multidrug-resistant or extensively drug-resistant (MDR/XDR)Pseudomonas aeruginosahas become a public health threat. This article reviews their mechanisms of resistance, epidemiology, and clinical impact and current and upcoming therapeutic options.In vitroandin vivotreatment studies and pharmacokinetic and pharmacodynamic (PK/PD) models are discussed. Polymyxins are reviewed as an important therapeutic option, outlining dosage, pharmacokinetics and pharmacodynamics, and their clinical efficacy against MDR/XDRP. aeruginosainfections. Their narrow therapeutic window and potential for combination therapy are also discussed. Other “old” antimicrobials, such as certain β-lactams, aminoglycosides, and fosfomycin, are reviewed here. New antipseudomonals, as well as those in the pipeline, are also reviewed. Ceftolozane-tazobactam has clinical activity against a significant percentage of MDR/XDRP. aeruginosastrains, and its microbiological and clinical data, as well as recommendations for improving its use against these bacteria, are described, as are those for ceftazidime-avibactam, which has better activity against MDR/XDRP. aeruginosa, especially strains with certain specific mechanisms of resistance. A section is devoted to reviewing upcoming active drugs such as imipenem-relebactam, cefepime-zidebactam, cefiderocol, and murepavadin. Finally, other therapeutic strategies, such as use of vaccines, antibodies, bacteriocins, anti-quorum sensing, and bacteriophages, are described as future options.

2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
Tamara Merz ◽  
Nicole Denoix ◽  
Martin Wepler ◽  
Holger Gäßler ◽  
David A. C. Messerer ◽  
...  

AbstractThis review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Zhaojing Zong ◽  
Wei Jing ◽  
Jin Shi ◽  
Shu'an Wen ◽  
Tingting Zhang ◽  
...  

ABSTRACT Oxazolidinones are efficacious in treating mycobacterial infections, including tuberculosis (TB) caused by drug-resistant Mycobacterium tuberculosis. In this study, we compared the in vitro activities and MIC distributions of delpazolid, a novel oxazolidinone, and linezolid against multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) in China. Additionally, genetic mutations in 23S rRNA, rplC, and rplD genes were analyzed to reveal potential mechanisms underlying the observed oxazolidinone resistance. A total of 240 M. tuberculosis isolates were included in this study, including 120 MDR-TB isolates and 120 XDR-TB isolates. Overall, linezolid and delpazolid MIC90 values for M. tuberculosis isolates were 0.25 mg/liter and 0.5 mg/liter, respectively. Based on visual inspection, we tentatively set epidemiological cutoff (ECOFF) values for MIC determinations for linezolid and delpazolid at 1.0 mg/liter and 2.0 mg/liter, respectively. Although no significant difference in resistance rates was observed between linezolid and delpazolid among XDR-TB isolates (P > 0.05), statistical analysis revealed a significantly greater proportion of linezolid-resistant isolates than delpazolid-resistant isolates within the MDR-TB group (P = 0.036). Seven (53.85%) of 13 linezolid-resistant isolates were found to harbor mutations within the three target genes. Additionally, 1 isolate exhibited an amino acid substitution (Arg126His) within the protein encoded by rplD that contributed to high-level resistance to linezolid (MIC of >16 mg/liter), compared to a delpazolid MIC of 0.25. In conclusion, in vitro susceptibility testing revealed that delpazolid antibacterial activity was comparable to that of linezolid. A novel mutation within rplD that endowed M. tuberculosis with linezolid, but not delpazolid, resistance was identified.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Helio S. Sader ◽  
Mariana Castanheira ◽  
Dee Shortridge ◽  
Rodrigo E. Mendes ◽  
Robert K. Flamm

ABSTRACT The in vitro activity of ceftazidime-avibactam and many comparator agents was determined against various resistant subsets of organisms selected among 36,380 Enterobacteriaceae and 7,868 Pseudomonas aeruginosa isolates. The isolates were consecutively collected from 94 U.S. hospitals, and all isolates were tested for susceptibility by reference broth microdilution methods in a central monitoring laboratory (JMI Laboratories). Enterobacteriaceae isolates resistant to carbapenems (CRE) and/or ceftazidime-avibactam (MIC ≥ 16 μg/ml) were evaluated for the presence of genes encoding extended-spectrum β-lactamases and carbapenemases. Ceftazidime-avibactam inhibited >99.9% of all Enterobacteriaceae at the susceptible breakpoint of ≤8 μg/ml and was active against multidrug-resistant (MDR; n = 2,953; MIC50/90, 0.25/1 μg/ml; 99.2% susceptible), extensively drug-resistant (XDR; n = 448; MIC50/90, 0.5/2 μg/ml; 97.8% susceptible), and CRE (n = 513; MIC50/90, 0.5/2 μg/ml; 97.5% susceptible) isolates. Only 82.2% of MDR Enterobacteriaceae (n = 2,953) and 64.2% of ceftriaxone-nonsusceptible Klebsiella pneumoniae (n = 1,063) isolates were meropenem susceptible. Among Enterobacter cloacae (22.2% ceftazidime nonsusceptible), 99.8% of the isolates, including 99.3% of the ceftazidime-nonsusceptible isolates, were ceftazidime-avibactam susceptible. Only 23 of 36,380 Enterobacteriaceae (0.06%) isolates were ceftazidime-avibactam nonsusceptible, including 9 metallo-β-lactamase producers and 2 KPC-producing strains with porin alteration; the remaining 12 strains showed negative results for all β-lactamases tested. Ceftazidime-avibactam showed potent activity against P. aeruginosa (MIC50/90, 2/4 μg/ml; 97.1% susceptible), including MDR (MIC50/90, 4/16 μg/ml; 86.5% susceptible) isolates, and inhibited 71.8% of isolates nonsusceptible to meropenem, piperacillin-tazobactam, and ceftazidime (n = 628). In summary, ceftazidime-avibactam demonstrated potent activity against a large collection (n = 44,248) of contemporary Gram-negative bacilli isolated from U.S. patients, including organisms resistant to most currently available agents, such as CRE and meropenem-nonsusceptible P. aeruginosa.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Katharina Schaufler ◽  
Torsten Semmler ◽  
Lothar H. Wieler ◽  
Darren J. Trott ◽  
Johann Pitout ◽  
...  

ABSTRACT The pathogenic extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli lineage ST648 is increasingly reported from multiple origins. Our study of a large and global ST648 collection from various hosts (87 whole-genome sequences) combining core and accessory genomics with functional analyses and in vivo experiments suggests that ST648 is a nascent and generalist lineage, lacking clear phylogeographic and host association signals. By including large numbers of ST131 (n = 107) and ST10 (n = 96) strains for comparative genomics and phenotypic analysis, we demonstrate that the combination of multidrug resistance and high-level virulence are the hallmarks of ST648, similar to international high-risk clonal lineage ST131. Specifically, our in silico, in vitro, and in vivo results demonstrate that ST648 is well equipped with biofilm-associated features, while ST131 shows sophisticated signatures indicative of adaption to urinary tract infection, potentially conveying individual ecological niche adaptation. In addition, we used a recently developed NFDS (negative frequency-dependent selection) population model suggesting that ST648 will increase significantly in frequency as a cause of bacteremia within the next few years. Also, ESBL plasmids impacting biofilm formation aided in shaping and maintaining ST648 strains to successfully emerge worldwide across different ecologies. Our study contributes to understanding what factors drive the evolution and spread of emerging international high-risk clonal lineages.


2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Lukas Muri ◽  
Michael Perny ◽  
Jonas Zemp ◽  
Denis Grandgirard ◽  
Stephen L. Leib

ABSTRACTDespite appropriate antibiotic therapy, pneumococcal meningitis (PM) is associated with a case fatality rate of up to 30% in high-income countries. Survivors often suffer from severe lifelong disabilities. An excessive inflammatory reaction drives the pathophysiology, leading to brain damage and neurologic sequelae. We aimed to improve the outcome of experimental PM by simultaneously targeting different pathophysiological mechanisms with combined adjunctive therapies previously shown to be neuroprotective.In vitro, the anti-inflammatory effects of doxycycline and daptomycin were evaluated on primary rat astroglial cells stimulated withStreptococcus pneumoniae. Eleven-day-old infant Wistar rats were infected intracisternally withS. pneumoniaeand randomized for treatment with ceftriaxone or combination adjuvant therapy consisting of ceftriaxone, daptomycin, and doxycycline. During acute PM, combined-adjuvant therapy with ceftriaxone, daptomycin, and doxycycline increased the survival rate from 64.1% to 85.8% (P < 0.01) and alleviated weight loss compared to ceftriaxone monotherapy (P < 0.01). Levels of inflammatory cytokines were significantly reduced by combined-adjuvant therapyin vitro(P < 0.0001) and in cerebrospinal fluidin vivo(P < 0.05). In infected animals treated with combined adjunctive therapy, cortical damage was significantly reduced (P < 0.05), and animals showed a trend toward better hearing capacity 3 weeks after the infection (P = 0.089), an effect which was significant in mildly infected animals (48 decibels [dB] versus 67.22 dB;P < 0.05). These mildly infected animals showed significantly reduced cochlear fibrous occlusion (P < 0.01). By combining nonbacteriolytic daptomycin and anti-inflammatory doxycycline with ceftriaxone, the previously reported beneficial effects of the drugs were cumulated and identified the triple-antibiotic therapy as a promising therapeutic option for pediatric PM.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Manoj Jangra ◽  
Manpreet Kaur ◽  
Rushikesh Tambat ◽  
Rohit Rana ◽  
Sushil K. Maurya ◽  
...  

ABSTRACTThe World Health Organization has categorized the Gram-negative superbugs, which are inherently impervious to many antibiotics, as critical priority pathogens due to the lack of effective treatments. The breach in our last-resort antibiotic (i.e., colistin) by extensively drug-resistant and pan-drug-resistantEnterobacteriaceaestrains demands the immediate development of new therapies. In the present study, we report the discovery of tridecaptin M, a new addition to the family, and its potential against colistin-resistantEnterobacteriaceae in vitroandin vivo. Also, we performed mode-of-action studies using various fluorescent probes and studied the hemolytic activity and mammalian cytotoxicity in two cell lines. Tridecaptin M displayed strong antibacterial activity (MICs of 2 to 8 μg ml−1) against clinical strains ofKlebsiella pneumoniae(which were resistant to colistin, carbapenems, third- and fourth-generation cephalosporins, fluoroquinolones, fosfomycin, and other antibiotics) andmcr-1-positiveEscherichia colistrains. Unlike polymyxins, tridecaptin M did not permeabilize the outer membrane or cytoplasmic membrane. It blocked ATP synthesis in bacteria by dissipating the proton motive force. The compound exhibited negligible acquired resistance, lowin vitrocytotoxicity and hemolytic activity, and no significant acute toxicity in mice. It also showed promising efficacy in a thigh infection model of colistin-resistantK. pneumoniae. Altogether, these results demonstrate the future prospects of this class of antibiotics to address the unmet medical need to circumvent colistin resistance in extensively drug-resistantEnterobacteriaceaeinfections. The work also emphasizes the importance of natural products in our shrunken drug discovery pipeline.


2014 ◽  
Vol 59 (1) ◽  
pp. 170-177 ◽  
Author(s):  
Geoffrey W. Birrell ◽  
Marina Chavchich ◽  
Arba L. Ager ◽  
Hong-Ming Shieh ◽  
Gavin D. Heffernan ◽  
...  

ABSTRACT4-(tert-Butyl)-2-((tert-butylamino)methyl)-6-(6-(trifluoromethyl)pyridin-3-yl)-phenol (JPC-2997) is a new aminomethylphenol compound that is highly activein vitroagainst the chloroquine-sensitive D6, the chloroquine-resistant W2, and the multidrug-resistant TM90-C2BPlasmodium falciparumlines, with 50% inhibitory concentrations (IC50s) ranging from 7 nM to 34 nM. JPC-2997 is >2,500 times less cytotoxic (IC50s > 35 μM) to human (HepG2 and HEK293) and rodent (BHK) cell lines than the D6 parasite line. In comparison to the chemically related WR-194,965, a drug that had advanced to clinical studies, JPC-2997 was 2-fold more activein vitroagainstP. falciparumlines and 3-fold less cytotoxic. The compound possesses potentin vivosuppression activity againstPlasmodium berghei, with a 50% effective dose (ED50) of 0.5 mg/kg of body weight/day following oral dosing in the Peters 4-day test. The radical curative dose of JPC-2997 was remarkably low, at a total dose of 24 mg/kg, using the modified Thompson test. JPC-2997 was effective in curing threeAotusmonkeys infected with a chloroquine- and pyrimethamine-resistant strain ofPlasmodium vivaxat a dose of 20 mg/kg daily for 3 days. At the doses administered, JPC-2997 appeared to be well tolerated in mice and monkeys. Preliminary studies of JPC-2997 in mice show linear pharmacokinetics over the range 2.5 to 40 mg/kg, a low clearance of 0.22 liters/h/kg, a volume of distribution of 15.6 liters/kg, and an elimination half-life of 49.8 h. The highin vivopotency data and lengthy elimination half-life of JPC-2997 suggest that it is worthy of further preclinical assessment as a partner drug.


2014 ◽  
Vol 59 (3) ◽  
pp. 1620-1626 ◽  
Author(s):  
Osmar N. Silva ◽  
Isabel C. M. Fensterseifer ◽  
Elaine A. Rodrigues ◽  
Hortência H. S. Holanda ◽  
Natasha R. F. Novaes ◽  
...  

ABSTRACTThe rapid increase in the incidence of multidrug-resistant infections today has led to enormous interest in antimicrobial peptides (AMPs) as suitable compounds for developing unusual antibiotics. In this study, clavanin A, an antimicrobial peptide previously isolated from the marine tunicateStyela clava, was selected as a purposeful molecule that could be used in controlling infection and further synthesized. Clavanin A wasin vitroevaluated againstStaphylococcus aureusandEscherichia colias well as toward L929 mouse fibroblasts and skin primary cells (SPCs). Moreover, this peptide was challenged here in anin vivowound and sepsis model, and the immune response was also analyzed. Despite displaying clearin vitroantimicrobial activity toward Gram-positive and -negative bacteria, clavanin A showed no cytotoxic activities against mammalian cells, and in acute toxicity tests, no adverse reaction was observed at any of the concentrations. Moreover, clavanin A significantly reduced theS. aureusCFU in an experimental wound model. This peptide also reduced the mortality of mice infected withE. coliandS. aureusby 80% compared with that of control animals (treated with phosphate-buffered saline [PBS]): these data suggest that clavanin A prevents the start of sepsis and thereby reduces mortality. These data suggest that clavanin A is an AMP that could improve the development of novel peptide-based strategies for the treatment of wound and sepsis infections.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Manoon Leechawengwongs ◽  
Therdsak Prammananan ◽  
Sarinya Jaitrong ◽  
Pamaree Billamas ◽  
Nampueng Makhao ◽  
...  

ABSTRACT New fluoroquinolones (FQs) have been shown to be more active against drug-resistant Mycobacterium tuberculosis strains than early FQs, such as ofloxacin. Sitafloxacin (STFX) is a new fluoroquinolone with in vitro activity against a broad range of bacteria, including M. tuberculosis. This study aimed to determine the in vitro activity of STFX against all groups of drug-resistant strains, including multidrug-resistant M. tuberculosis (MDR M. tuberculosis), MDR M. tuberculosis with quinolone resistance (pre-XDR), and extensively drug-resistant (XDR) strains. A total of 374 drug-resistant M. tuberculosis strains were tested for drug susceptibility by the conventional proportion method, and 95 strains were randomly submitted for MIC determination using the microplate alamarBlue assay (MABA). The results revealed that all the drug-resistant strains were susceptible to STFX at a critical concentration of 2 μg/ml. Determination of the MIC90s of the strains showed different MIC levels; MDR M. tuberculosis strains had a MIC90 of 0.0625 μg/ml, whereas pre-XDR and XDR M. tuberculosis strains had identical MIC90s of 0.5 μg/ml. Common mutations within the quinolone resistance-determining region (QRDR) of gyrA and/or gyrB did not confer resistance to STFX, except that double mutations of GyrA at Ala90Val and Asp94Ala were found in strains with a MIC of 1.0 μg/ml. The results indicated that STFX had potent in vitro activity against all the groups of drug-resistant M. tuberculosis strains and should be considered a new repurposed drug for treatment of multidrug-resistant and extensively drug-resistant TB.


2015 ◽  
Vol 59 (8) ◽  
pp. 4457-4463 ◽  
Author(s):  
Benoit Lechartier ◽  
Stewart T. Cole

ABSTRACTClofazimine (CZM) is an antileprosy drug that was recently repurposed for treatment of multidrug-resistant tuberculosis. InMycobacterium tuberculosis, CZM appears to act as a prodrug, which is reduced by NADH dehydrogenase (NDH-2), to release reactive oxygen species upon reoxidation by O2. CZM presumably competes with menaquinone (MK-4), a key cofactor in the mycobacterial electron transfer chain, for its reduction by NDH-2. We studied the effect of MK-4 supplementation on the activity of CZM againstM. tuberculosisand found direct competition between CZM and MK-4 for the cidal effect of CZM, against nonreplicating and actively growing bacteria, as MK-4 supplementation blocked the drug's activity against nonreplicating bacteria. We demonstrated that CZM, like bedaquiline, is synergisticin vitrowith benzothiazinones such as 2-piperazino-benzothiazinone 169 (PBTZ169), and this synergy also occurs against nonreplicating bacteria. The synergy between CZM and PBTZ169 was lost in an MK-4-rich medium, indicating that MK-4 is the probable link between their activities. The efficacy of the dual combination of CZM and PBTZ169 was testedin vivo, where a great reduction in bacterial load was obtained in a murine model of chronic tuberculosis. Taken together, these data confirm the potential of CZM in association with PBTZ169 as the basis for a new regimen against drug-resistant strains ofM. tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document