scholarly journals Beneficial Dysregulation of the Time Course of Inflammatory Mediators in Lipopolysaccharide-Induced Tumor Necrosis Factor Alpha Factor-Deficient Mice

2010 ◽  
Vol 17 (5) ◽  
pp. 699-704 ◽  
Author(s):  
Sreedevi Srinivasan ◽  
Susan E. Leeman ◽  
Salomon Amar

ABSTRACT To begin to understand the surprising survival of macrophage-specific lipopolysaccharide-induced tumor necrosis factor alpha factor-deficient (macLITAF−/−) animals after a lethal dose of lipopolysaccharide (LPS), as reported earlier, the present follow-up study focuses on the role of LITAF in the regulation of inflammatory cytokines secreted in response to lethal or sublethal doses of LPS administered to wild-type (WT) and macLITAF−/− mice. A time course study of kinase expression in peritoneal macrophages revealed increased phosphorylation of prosurvival kinases Akt, Erk1/2, and ribosomal S6 kinase (RSK) in macLITAF−/− mice compared to that in WT mice (n = 8), confirming their role in LPS-mediated diseases. macLITAF−/− mice (n = 8) survived a lethal dose of LPS plus d-galactosamine (d-GalN), expressing lower serum levels of pro- and anti-inflammatory cytokines than the WT levels. To extend our knowledge on LPS-induced inflammatory events, an effective sublethal dose of LPS was administered to the animals (n = 14). WT animals exhibited an acute inflammatory response that decreased after 4 h. Interestingly, macLITAF−/− mice exhibited an initial delay in the secretion of proinflammatory cytokines that peaked after 8 h and reached WT levels after 18 h. Anti-inflammatory cytokine secretions were initially delayed but increased after 4 h and remained elevated compared to WT levels, even after 18 h. Our results demonstrate that LITAF deficiency in vivo affects cytokines other than TNF-α and influences the balance between the pro- and anti-inflammatory cytokines, which protects the animals from the deleterious effects of an LPS-induced inflammatory response, resulting in a beneficial host regulation of inflammatory cytokines and in enhanced survival. Therapeutic intervention aimed at reducing LITAF via kinase modulators may prove useful in preventing LPS-induced mortality.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 956
Author(s):  
Yonelian Yuyun ◽  
Pahweenvaj Ratnatilaka Na Bhuket ◽  
Wiwat Supasena ◽  
Piyapan Suwattananuruk ◽  
Kemika Praengam ◽  
...  

Curcumin (CUR) has been used as adjuvant therapy for therapeutic application in the treatment of psoriasis through several mechanisms of action. Due to the poor oral bioavailability of CUR, several approaches have been developed to overcome the limitations of CUR, including the prodrug strategy. In this study, CUR was esterified with mycophenolic acid (MPA) as a novel conjugate prodrug. The MPA-CUR conjugate was structurally elucidated using FT-IR, 1H-NMR, 13C-NMR, and MS techniques. Bioavailable fractions (BFs) across Caco-2 cells of CUR, MPA, and MPA-CUR were collected for further biological activity evaluation representing an in vitro cellular transport model for oral administration. The antipsoriatic effect of the BFs was determined using antiproliferation and anti-inflammation assays against hyperproliferation of tumor necrosis factor-alpha (TNF-α)-induced human keratinocytes (HaCaT). The BF of MPA-CUR provided better antiproliferation than that of CUR (p < 0.001). The enhanced hyperproliferation suppression of the BF of MPA-CUR resulted from the reduction of several inflammatory cytokines, including IL-6, IL-8, and IL-1β. The molecular mechanisms of anti-inflammatory activity were mediated by an attenuated signaling cascade of MAPKs protein, i.e., p38, ERK, and JNK. Our results present evidence for the MPA-CUR conjugate as a promising therapeutic agent for treating psoriasis by antiproliferative and anti-inflammatory actions.


2009 ◽  
Vol 15 (10) ◽  
pp. 1135-1145 ◽  
Author(s):  
M. Melanson ◽  
P. Miao ◽  
D. Eisenstat ◽  
Y. Gong ◽  
X. Gu ◽  
...  

Background: Multiple sclerosis (MS) is a chronic, neurological disease characterized by targeted destruction of central nervous system (CNS) myelin. The autoimmune theory is the most widely accepted explanation of disease pathology. Circulating Th1 cells become activated by exposure to CNS-specific antigens such as myelin basic protein. The activated Th1 cells secrete inflammatory cytokines, which are pivotal for inflammatory responses. We hypothesize that enhanced production of inflammatory cytokines triggers cellular events within the dorsal root ganglia (DRG) and/or spinal cord, facilitating the development of neuropathic pain (NPP) in MS. NPP, the second worst disease-induced symptom suffered by patients with MS, is normally regulated by DRG and/or spinal cord. Objective: To determine gene and protein expression levels of tumor necrosis factor-alpha (TNFα) within DRG and/or spinal cord in an animal model of MS. Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in adolescent female Lewis rats. Animals were sacrificed every 3 days post-disease induction. DRG and spinal cords were harvested for protein and gene expression analysis. Results: We show significant increases in TNFα expression in the DRG and of EAE animals at peak disease stage, as assessed by clinical symptoms. Conclusion: Antigen-induced production of inflammatory cytokines such as TNFα within the DRG identifies a potential novel mechanism for MS-induced NPP.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260012
Author(s):  
Hao-Tsai Cheng ◽  
Chen-June Seak ◽  
Chien-Cheng Cheng ◽  
Tsung-Hsing Chen ◽  
Chang-Mu Sung ◽  
...  

Introduction Study of inflammatory cytokines in patients with caustic gastrointestinal tract injury is sketchy. This study investigated the cytokine profiling of patients with caustic substance ingestion, and analyzed the differences between patients with severe and mild injury. Methods This prospective, cross-sectional study enrolled 22 patients admitted to Chang Gung Memorial Hospital between March and October 2018. All patients underwent esophagogastroduodenoscopy in 24 hours. Patients were categorized into two subgroups, as mild (<2b, n = 11) or severe (≥2b, n = 11) group. Results The neutrophil count was higher in severe than mild group (P = 0.032). Patients in mild and severe groups exhibited significantly higher circulating inflammatory cytokines than healthy control, including interleukin (IL)-2, IL-5, IL-8, IL-9, IL-12, IL-13, interferon-gamma inducible protein-10, macrophage inflammatory protein-1 beta, regulated upon activation, normal T cell expressed and presumably secreted and tumor necrosis factor-alpha. Furthermore, the levels of IL-2 and tumor necrosis factor-alpha were significantly higher in patients with severe group than mild group. Although there was no difference in cumulative survival between both groups (P = 0.147), the severe group received more operations (P = 0.035) and suffered more gastrointestinal complications (P = 0.035) than mild group. Conclusion Caustic substance ingestion produces mucosal damages and leads to excessive neutrophils and inflammatory cytokines in peripheral blood.


Blood ◽  
1994 ◽  
Vol 83 (5) ◽  
pp. 1278-1288 ◽  
Author(s):  
HM Wolf ◽  
MB Fischer ◽  
H Puhringer ◽  
A Samstag ◽  
E Vogel ◽  
...  

Abstract While the protective effect of IgA antibodies against infection of the mucosal surfaces is well documented, the mechanisms involved are not entirely clear. The aim of the current study is to investigate the effect of human serum IgA on the release of inflammatory cytokines in human monocytes activated with a particulate stimulus, Haemophilus influenzae type b (Hib), or soluble lipopolysaccharide (LPS) purified from Escherichia coli. Our results show that IgA downregulates tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) production, whereas IgG examined in parallel had no effect. IgA had no inhibitory effect on Hib-induced granulocyte-macrophage colony-stimulating factor release. TNF-alpha and IL-6 release were downmodulated if IgA was present during cytokine induction, and IgA was also inhibitory if added to Hib-pretreated monocytes during the phase of cytokine release. These findings indicate that there are at least two mechanisms whereby IgA antibodies can downregulate TNF-alpha and IL-6 release in human monocytes: by a mechanism acting during the time of monocyte activation, and a mechanism that downregulates the production and/or the release of these cytokines in activated monocytes. Regulation of TNF-alpha and IL-6 release by IgA may be among the antiinflammatory mechanisms preventing an uncontrolled release of potentially noxious levels of inflammatory cytokines during acute and/or chronic inflammation.


2006 ◽  
Vol 104 (3) ◽  
pp. 403-410 ◽  
Author(s):  
Asokumar Buvanendran ◽  
Jeffrey S. Kroin ◽  
Richard A. Berger ◽  
Nadim J. Hallab ◽  
Chiranjeev Saha ◽  
...  

Background The central and peripheral inflammatory response to surgery may influence patient outcomes. This study examines the time course and clinical relevance of changes in prostaglandin E2 and cytokines in cerebrospinal fluid, local tissue (surgical site), and circulating blood during and after total hip replacement. Methods Thirty osteoarthritis patients undergoing primary total hip arthroplasty with spinal anesthesia were randomly allocated to three groups (n = 10/group): placebo for 4 days before surgery and on the morning of surgery; placebo for 4 days before surgery and oral rofecoxib 50 mg on the morning of surgery; oral rofecoxib 50 mg for 4 days before surgery and the morning of surgery. Cerebrospinal fluid and plasma were collected before surgery and up to 30 h after incision for measurement of prostaglandin E2 and interleukins. When hip replacement was complete, a drain was placed in the hip wound and exudates were collected at 3 to 30 h after incision. Results Cerebrospinal fluid showed an initial increase in interleukin 6 and a later rise in prostaglandin E2 concentration after surgery; interleukin 1beta and tumor necrosis factor alpha were undetectable. Hip surgical site fluid evidenced an increase in prostaglandin E2, interleukin 6, interleukin 8, and interleukin 1beta; tumor necrosis factor alpha decreased at 24 and 30 h. Preoperative administration of the cyclooxygenase 2 inhibitor rofecoxib reduced cerebrospinal fluid and surgical site prostaglandin E2 and cerebrospinal fluid interleukin 6. Cerebrospinal fluid prostaglandin E2 was positively correlated with postoperative pain and cerebrospinal fluid interleukin 6 with sleep disturbance. Poorer functional recovery was positively correlated with increased surgical site prostaglandin E2. Conclusions These results suggest that upregulation of prostaglandin E2 and interleukin 6 at central sites is an important component of surgery induced inflammatory response in patients and may influence clinical outcome.


2009 ◽  
Vol 78 (3) ◽  
pp. 1193-1201 ◽  
Author(s):  
Verónica I. Landoni ◽  
Marcelo de Campos-Nebel ◽  
Pablo Schierloh ◽  
Cecilia Calatayud ◽  
Gabriela C. Fernandez ◽  
...  

ABSTRACT Hemolytic-uremic syndrome (HUS) is generally caused by Shiga toxin (Stx)-producing Escherichia coli. Endothelial dysfunction mediated by Stx is a central aspect in HUS development. However, inflammatory mediators such as bacterial lipopolysaccharide (LPS) and polymorphonuclear neutrophils (PMN) contribute to HUS pathophysiology by potentiating Stx effects. Acute renal failure is the main feature of HUS, but in severe cases, patients can develop neurological complications, which are usually associated with death. Although the mechanisms of neurological damage remain uncertain, alterations of the blood-brain barrier associated with brain endothelial injury is clear. Astrocytes (ASTs) are the most abundant inflammatory cells of the brain that modulate the normal function of brain endothelium and neurons. The aim of this study was to evaluate the effects of Stx type 1 (Stx1) alone or in combination with LPS in ASTs. Although Stx1 induced a weak inflammatory response, pretreatment with LPS sensitized ASTs to Stx1-mediated effects. Moreover, LPS increased the level of expression of the Stx receptor and its internalization. An early inflammatory response, characterized by the release of tumor necrosis factor alpha (TNF-α) and nitric oxide and PMN-chemoattractant activity, was induced by Stx1 in LPS-sensitized ASTs, whereas activation, evidenced by higher levels of glial fibrillary acid protein and cell death, was induced later. Furthermore, increased adhesion and PMN-mediated cytotoxicity were observed after Stx1 treatment in LPS-sensitized ASTs. These effects were dependent on NF-κB activation or AST-derived TNF-α. Our results suggest that TNF-α is a pivotal effector molecule that amplifies Stx1 effects on LPS-sensitized ASTs, contributing to brain inflammation and leading to endothelial and neuronal injury.


Sign in / Sign up

Export Citation Format

Share Document