scholarly journals Gastrointestinal Tract and the Mucosal Macrophage Reservoir in HIV Infection

2014 ◽  
Vol 21 (11) ◽  
pp. 1469-1473 ◽  
Author(s):  
Dallas Brown ◽  
Joseph J. Mattapallil

ABSTRACTThe gastrointestinal tract (GIT) is a primary site for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection, replication, and dissemination. After an initial explosive phase of infection, HIV establishes latency. In addition to CD4 T cells, macrophages are readily infected, which can persist for long periods of time. Though macrophages at various systemic sites are infected, those present in the GIT constitute a major cellular reservoir due to the abundance of these cells at mucosal sites. Here, we review some of the important findings regarding what is known about the macrophage reservoir in the gut and explore potential approaches being pursued in the field to reduce this reservoir. The development of strategies that can lead to a functional cure will need to incorporate approaches that can eradicate the macrophage reservoir in the GIT.

2008 ◽  
Vol 82 (11) ◽  
pp. 5618-5630 ◽  
Author(s):  
Ronald S. Veazey ◽  
Paula M. Acierno ◽  
Kimberly J. McEvers ◽  
Susanne H. C. Baumeister ◽  
Gabriel J. Foster ◽  
...  

ABSTRACT Previously we have shown that CD8+ T cells are critical for containment of simian immunodeficiency virus (SIV) viremia and that rapid and profound depletion of CD4+ T cells occurs in the intestinal tract of acutely infected macaques. To determine the impact of SIV-specific CD8+ T-cell responses on the magnitude of the CD4+ T-cell depletion, we investigated the effect of CD8+ lymphocyte depletion during primary SIV infection on CD4+ T-cell subsets and function in peripheral blood, lymph nodes, and intestinal tissues. In peripheral blood, CD8+ lymphocyte-depletion changed the dynamics of CD4+ T-cell loss, resulting in a more pronounced loss 2 weeks after infection, followed by a temporal rebound approximately 2 months after infection, when absolute numbers of CD4+ T cells were restored to baseline levels. These CD4+ T cells showed a markedly skewed phenotype, however, as there were decreased levels of memory cells in CD8+ lymphocyte-depleted macaques compared to controls. In intestinal tissues and lymph nodes, we observed a significantly higher loss of CCR5+ CD45RA− CD4+ T cells in CD8+ lymphocyte-depleted macaques than in controls, suggesting that these SIV-targeted CD4+ T cells were eliminated more efficiently in CD8+ lymphocyte-depleted animals. Also, CD8+ lymphocyte depletion significantly affected the ability to generate SIV Gag-specific CD4+ T-cell responses and neutralizing antibodies. These results reemphasize that SIV-specific CD8+ T-cell responses are absolutely critical to initiate at least partial control of SIV infection.


2005 ◽  
Vol 79 (5) ◽  
pp. 3195-3199 ◽  
Author(s):  
Jean-Daniel Lelièvre ◽  
Frédéric Petit ◽  
Damien Arnoult ◽  
Jean-Claude Ameisen ◽  
Jérôme Estaquier

ABSTRACT Fas-mediated T-cell death is known to occur during human immunodeficiency virus (HIV) infection. In this study, we found that HIV type 1 LAI (HIV-1LAI) primes CD8+ T cells from healthy donors for apoptosis, which occurs after Fas ligation. This effect is counteracted by a broad caspase inhibitor (zVAD-fmk). Fas-mediated cell death does not depend on CD8+ T-cell infection, because it occurred in the presence of reverse transcriptase inhibitors. However, purified CD8+ T cells are sensitive to Fas only in the presence of soluble CD4. Finally, we found that interleukin 7 (IL-7) increases Fas-mediated CD4+ and CD8+ T-cell death induced by HIV-1LAI. Since high levels of IL-7 are a marker of poor prognosis during HIV infection, our data suggest that enhancement of Fas-mediated T-cell death by HIV-1LAI and IL-7 is one of the mechanisms involved in progression to AIDS.


2006 ◽  
Vol 80 (6) ◽  
pp. 3083-3087 ◽  
Author(s):  
Máire F. Quigley ◽  
Kristina Abel ◽  
Bartek Zuber ◽  
Christopher J. Miller ◽  
Johan K. Sandberg ◽  
...  

ABSTRACT Perforin-mediated cytotoxicity is a major effector function of virus-specific CD8 T cells. We have investigated the expression of perforin in the gut, an important site of simian immunodeficiency virus (SIV) pathogenesis, during experimental SIV infection of rhesus macaques. We observed significant increases in perforin protein and mRNA expression levels in the colons of SIV-infected macaques as early as 21 days after infection. However, during chronic infection, despite ongoing viral replication, perforin expression returned to levels similar to those detected in SIV-naïve animals. These findings demonstrate the presence of a robust perforin-positive response in gastrointestinal CD8 T cells during acute, but not chronic, SIV infection.


1994 ◽  
Vol 179 (2) ◽  
pp. 413-424 ◽  
Author(s):  
G Dadaglio ◽  
S Garcia ◽  
L Montagnier ◽  
M L Gougeon

We have analyzed the V beta usage by CD4+ and CD8+ T cells from human immunodeficiency virus (HIV)-infected individuals in response to an in vitro stimulation with the superantigenic erythrogenic toxin A (ETA) of Streptococcus pyogenes. ETA amplifies specifically CD4+ and CD8+ T cells from control donors expressing the V beta 8 and the V beta 12 elements. When peripheral T cells from asymptomatic HIV-infected individuals were stimulated with ETA, there was a complete lack of activation of the V beta 8+ T cell subset, whereas the V beta 12+ T cell subset responded normally to the superantigen. This V beta-specific anergy, which was also observed in response to staphylococcal enterotoxin E (SEE), affected both CD4+ and CD8+ T cells and represented an intrinsic functional defect rather than a specific lack of response to bacterial superantigens since it was also observed after a stimulation with V beta 8 monoclonal antibodies. The V beta 8 anergic T cells did not express interleukin 2 receptors (IL-2Rs) and failed to proliferate in response to exogenous IL-2 or IL-4, suggesting that this anergy was not a reversible process, at least by the use of these cytokines. The unresponsiveness of the V beta 8 T cell subset is frequent since it was found in 56% of the patients studied, and comparison of the clinical status of responder vs. anergic patients indicated that the only known common factor between them was HIV infection. In addition, it is noteworthy that the anergy of the V beta 8 subset may be a very early phenomenon since it was found in a patient at Centers for Disease Control stage I of the disease. These data provide evidence that a dominant superantigen may be involved in the course of HIV infection and that the contribution of HIV has to be considered.


2001 ◽  
Vol 82 (7) ◽  
pp. 1601-1612 ◽  
Author(s):  
Lilian Walther-Jallow ◽  
Charlotta Nilsson ◽  
Johan Söderlund ◽  
Peter ten Haaft ◽  
Barbro Mäkitalo ◽  
...  

In this study we compared the efficacy of live attenuated human immunodeficiency virus type 2 (HIV-2) vaccine alone versus boosting with live non-pathogenic HIV-2 following priming with ALVAC HIV-2 (recombinant canarypox virus expressing HIV-2 env, gag and pol). Six monkeys were first inoculated intravenously with live HIV-2SBL-6669 and 7 to 10 months later were challenged intrarectally with 10 MID50 of cell-free simian immunodeficiency virus (SIV) strain SIVsm. One monkey was completely protected against SIV infection and all five monkeys that became SIV-infected showed a lower virus replication and an initial lower virus load as compared with a parallel group of six control animals. In another experiment five monkeys were immunized either three times with ALVAC HIV-2 alone or twice with ALVAC HIV-2 and once with purified native HIV-2 gp125. The monkeys were then challenged with HIV-2 given intravenously and finally with pathogenic SIVsm given intrarectally. After challenge with SIVsm, three of five monkeys were completely protected against SIVsm infection whereas the remaining two macaques became SIV-infected but with limited virus replication. In conclusion, vaccination with an ALVAC HIV-2 vaccine followed by exposure to live HIV-2 could induce cross-protection against mucosal infection with SIVsm and seemed to be more efficient than immunization with a live HIV-2 vaccine only.


1996 ◽  
Vol 40 (10) ◽  
pp. 2369-2374 ◽  
Author(s):  
K Ruxrungtham ◽  
E Boone ◽  
H Ford ◽  
J S Driscoll ◽  
R T Davey ◽  
...  

A new antiretroviral agent, 2'-beta-fluoro-2',3'-dideoxyadenosine (FddA), is an acid-stable compound whose triphosphate form is a potent reverse transcriptase inhibitor with in vitro anti-human immunodeficiency virus (HIV) activity and a favorable pharmacokinetic profile. Severe combined immunodeficiency (SCID) mice reconstituted with human peripheral blood leukocytes (hu-PBL-SCID mice) provide a useful small-animal model for HIV research. In the present study we utilized this experimental system for the in vivo evaluation of the anti-HIV activity of this new compound when administered prior to infection. Initial studies revealed that, following a challenge with 50 100% tissue culture infective doses of HIV type 1 lymphadenopathy-associated virus, 39 of 42 (93%) control mice developed HIV infection, as evidenced by positive coculture or positive PCR. Administration of zidovudine decreased the infection rate to 5 of 16 (31%), while administration of FddA decreased the infection rate to 0 of 44 (0%). In follow-up controlled studies, the anti-HIV activity of FddA was confirmed, with 18 of 20 control mice showing evidence of HIV infection, compared with 4 of 20 FddA-treated mice. In addition to having direct anti-HIV effects, FddA was found to have a protective effect on human CD4+ T cells in the face of HIV infection. Mice treated with FddA were found to have a significantly higher percentage of CD4+ T cells than controls (10.3% +/- 3.4% versus 0.27% +/- 0.21%; P = 0.01). Thus, FddA, with its potent anti-HIV activity in vivo, high oral bioavailability, long intracellular half-life, and ability to preserve CD4+ cells in the presence of HIV, appears to be a promising agent for clinical investigation.


2017 ◽  
Vol 91 (13) ◽  
Author(s):  
Masayuki Fujino ◽  
Hirotaka Sato ◽  
Tomotaka Okamura ◽  
Akihiko Uda ◽  
Satoshi Takeda ◽  
...  

ABSTRACT Glycosylation of Env defines pathogenic properties of simian immunodeficiency virus (SIV). We previously demonstrated that pathogenic SIVmac239 and a live-attenuated, quintuple deglycosylated Env mutant (Δ5G) virus target CD4+ T cells residing in different tissues during acute infection. SIVmac239 and Δ5G preferentially infected distinct CD4+ T cells in secondary lymphoid organs (SLOs) and within the lamina propria of the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323–9336, 2012, https://doi.org/10.1128/JVI.00948-12 ). Here, we studied the host responses relevant to SIV targeting of CXCR3+ CCR5+ CD4+ T cells in SLOs. Genome-wide transcriptome analyses revealed that Th1-polarized inflammatory responses, defined by expression of CXCR3 chemokines, were distinctly induced in the SIVmac239-infected animals. Consistent with robust expression of CXCL10, CXCR3+ T cells were depleted from blood in the SIVmac239-infected animals. We also discovered that elevation of CXCL10 expression in blood and SLOs was secondary to the induction of CD14+ CD16+ monocytes and MAC387+ macrophages, respectively. Since the significantly higher levels of SIV infection in SLOs occurred with a massive accumulation of infiltrated MAC387+ macrophages, T cells, dendritic cells (DCs), and residential macrophages near high endothelial venules, the results highlight critical roles of innate/inflammatory responses in SIVmac239 infection. Restricted infection in SLOs by Δ5G also suggests that glycosylation of Env modulates innate/inflammatory responses elicited by cells of monocyte/macrophage/DC lineages. IMPORTANCE We previously demonstrated that a pathogenic SIVmac239 virus and a live-attenuated, deglycosylated mutant Δ5G virus infected distinct CD4+ T cell subsets in SLOs and the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323–9336, 2012, https://doi.org/10.1128/JVI.00948-12 ). Accordingly, infections with SIVmac239, but not with Δ5G, deplete CXCR3+ CCR5+ CD4+ T (Th1) cells during the primary infection, thereby compromising the cellular immune response. Thus, we hypothesized that distinct host responses are elicited by the infections with two different viruses. We found that SIVmac239 induced distinctly higher levels of inflammatory Th1 responses than Δ5G. In particular, SIVmac239 infection elicited robust expression of CXCL10, a chemokine for CXCR3+ cells, in CD14+ CD16+ monocytes and MAC387+ macrophages recently infiltrated in SLOs. In contrast, Δ5G infection elicited only modest inflammatory responses. These results suggest that the glycosylation of Env modulates the inflammatory/Th1 responses through the monocyte/macrophage subsets and elicits marked differences in SIV infection and clinical outcomes.


2007 ◽  
Vol 81 (16) ◽  
pp. 8439-8450 ◽  
Author(s):  
Diana M. Brainard ◽  
Andrew M. Tager ◽  
Joseph Misdraji ◽  
Nicole Frahm ◽  
Mathias Lichterfeld ◽  
...  

ABSTRACT To exert their cytotoxic function, cytotoxic T-lymphocytes (CTL) must be recruited into infected lymphoid tissue where the majority of human immunodeficiency virus (HIV) replication occurs. Normally, effector T cells exit lymph nodes (LNs) and home to peripheral sites of infection. How HIV-specific CTL migrate into lymphoid tissue from which they are normally excluded is unknown. We investigated which chemokines and receptors mediate this reverse homing and whether impairment of this homing could contribute to CTL dysfunction as HIV infection progresses. Analysis of CTL chemokine receptor expression in the blood and LNs of untreated HIV-infected individuals with stable, chronic infection or advanced disease demonstrated that LNs were enriched for CXCR3+ CD8 T cells in all subjects, suggesting a key role for this receptor in CTL homing to infected lymphoid tissue. Compared to subjects with chronic infection, however, subjects with advanced disease had fewer CXCR3+ CD8 T cells in blood and LNs. CXCR3 expression on bulk and HIV-specific CD8 T cells correlated positively with CD4 count and negatively with viral load. In advanced infection, there was an accumulation of HIV-specific CD8 T cells at the effector memory stage; however, decreased numbers of CXCR3+ CD8 T cells were seen across all maturation subsets. Plasma CXCL9 and CXCL10 were elevated in both infected groups in comparison to the levels in uninfected controls, whereas lower mRNA levels of CXCR3 ligands and CD8 in LNs were seen in advanced infection. These data suggest that both CXCR3+ CD8 T cells and LN CXCR3 ligands decrease as HIV infection progresses, resulting in reduced homing of CTL into LNs and contributing to immune dysfunction.


2006 ◽  
Vol 80 (16) ◽  
pp. 8236-8247 ◽  
Author(s):  
Moraima Guadalupe ◽  
Sumathi Sankaran ◽  
Michael D. George ◽  
Elizabeth Reay ◽  
David Verhoeven ◽  
...  

ABSTRACT Although the gut-associated lymphoid tissue (GALT) is an important early site for human immunodeficiency virus (HIV) replication and severe CD4+ T-cell depletion, our understanding is limited about the restoration of the gut mucosal immune system during highly active antiretroviral therapy (HAART). We evaluated the kinetics of viral suppression, CD4+ T-cell restoration, gene expression, and HIV-specific CD8+ T-cell responses in longitudinal gastrointestinal biopsy and peripheral blood samples from patients initiating HAART during primary HIV infection (PHI) or chronic HIV infection (CHI) using flow cytometry, real-time PCR, and DNA microarray analysis. Viral suppression was more effective in GALT of PHI patients than CHI patients during HAART. Mucosal CD4+ T-cell restoration was delayed compared to peripheral blood and independent of the time of HAART initiation. Immunophenotypic analysis showed that repopulating mucosal CD4+ T cells were predominantly of a memory phenotype and expressed CD11α, αEβ7, CCR5, and CXCR4. Incomplete suppression of viral replication in GALT during HAART correlated with increased HIV-specific CD8+ T-cell responses. DNA microarray analysis revealed that genes involved in inflammation and cell activation were up regulated in patients who did not replenish mucosal CD4+ T cells efficiently, while expression of genes involved in growth and repair was increased in patients with efficient mucosal CD4+ T-cell restoration. Our findings suggest that the discordance in CD4+ T-cell restoration between GALT and peripheral blood during therapy can be attributed to the incomplete viral suppression and increased immune activation and inflammation that may prevent restoration of CD4+ T cells and the gut microenvironment.


2008 ◽  
Vol 82 (22) ◽  
pp. 11181-11196 ◽  
Author(s):  
Meritxell Genescà ◽  
Pamela J. Skinner ◽  
Jung Joo Hong ◽  
Jun Li ◽  
Ding Lu ◽  
...  

ABSTRACT The presence, at the time of challenge, of antiviral effector T cells in the vaginal mucosa of female rhesus macaques immunized with live-attenuated simian-human immunodeficiency virus 89.6 (SHIV89.6) is associated with consistent and reproducible protection from pathogenic simian immunodeficiency virus (SIV) vaginal challenge (18). Here, we definitively demonstrate the protective role of the SIV-specific CD8+ T-cell response in SHIV-immunized monkeys by CD8+ lymphocyte depletion, an intervention that abrogated SHIV-mediated control of challenge virus replication and largely eliminated the SIV-specific T-cell responses in blood, lymph nodes, and genital mucosa. While in the T-cell-intact SHIV-immunized animals, polyfunctional and degranulating SIV-specific CD8+ T cells were present in the genital tract and lymphoid tissues from the day of challenge until day 14 postchallenge, strikingly, expansion of SIV-specific CD8+ T cells in the immunized monkeys was minimal and limited to the vagina. Thus, protection from uncontrolled SIV replication in animals immunized with attenuated SHIV89.6 is primarily mediated by CD8+ T cells that do not undergo dramatic systemic expansion after SIV challenge. These findings demonstrate that despite, and perhaps because of, minimal systemic expansion of T cells at the time of challenge, a stable population of effector-cytotoxic CD8+ T cells can provide significant protection from vaginal SIV challenge.


Sign in / Sign up

Export Citation Format

Share Document