scholarly journals Aminopeptidase N1 (EtAPN1), an M1 Metalloprotease of the Apicomplexan Parasite Eimeria tenella, Participates in Parasite Development

2014 ◽  
Vol 13 (7) ◽  
pp. 884-895 ◽  
Author(s):  
Simon Gras ◽  
Anna Byzia ◽  
Florence B. Gilbert ◽  
Sheena McGowan ◽  
Marcin Drag ◽  
...  

ABSTRACTAminopeptidases N are metalloproteases of the M1 family that have been reported in numerous apicomplexan parasites, includingPlasmodium,Toxoplasma,Cryptosporidium, andEimeria. While investigating the potency of aminopeptidases as therapeutic targets against coccidiosis, one of the most important avian diseases caused by the genusEimeria, we identified and characterizedEimeria tenellaaminopeptidase N1 (EtAPN1). Its inhibition by bestatin and amastatin, as well as its reactivation by divalent ions, is typical of zinc-dependent metalloproteases. EtAPN1 shared a similar sequence, three-dimensional structure, and substrate specificity and similar kinetic parameters with A-M1 fromPlasmodium falciparum(PfA-M1), a validated target in the treatment of malaria. EtAPN1 is synthesized as a 120-kDa precursor and cleaved into 96-, 68-, and 38-kDa forms during sporulation. Further, immunolocalization assays revealed that, similar to PfA-M1, EtAPN1 is present during the intracellular life cycle stages in both the parasite cytoplasm and the parasite nucleus. The present results support the hypothesis of a conserved role between the two aminopeptidases, and we suggest that EtAPN1 might be a valuable target for anticoccidiosis drugs.

2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Sabino Pacheco ◽  
Isabel Gómez ◽  
Jorge Sánchez ◽  
Blanca-Ines García-Gómez ◽  
Mario Soberón ◽  
...  

ABSTRACT Bacillus thuringiensis three-domain Cry toxins kill insects by forming pores in the apical membrane of larval midgut cells. Oligomerization of the toxin is an important step for pore formation. Domain I helix α-3 participates in toxin oligomerization. Here we identify an intramolecular salt bridge within helix α-3 of Cry4Ba (D111-K115) that is conserved in many members of the family of three-domain Cry toxins. Single point mutations such as D111K or K115D resulted in proteins severely affected in toxicity. These mutants were also altered in oligomerization, and the mutant K115D was more sensitive to protease digestion. The double point mutant with reversed charges, D111K-K115D, recovered both oligomerization and toxicity, suggesting that this salt bridge is highly important for conservation of the structure of helix α-3 and necessary to promote the correct oligomerization of the toxin. IMPORTANCE Domain I has been shown to be involved in oligomerization through helix α-3 in different Cry toxins, and mutations affecting oligomerization also elicit changes in toxicity. The three-dimensional structure of the Cry4Ba toxin reveals an intramolecular salt bridge in helix α-3 of domain I. Mutations that disrupt this salt bridge resulted in changes in Cry4Ba oligomerization and toxicity, while a double point reciprocal mutation that restored the salt bridge resulted in recovery of toxin oligomerization and toxicity. These data highlight the role of oligomer formation as a key step in Cry4Ba toxicity.


2016 ◽  
Vol 82 (16) ◽  
pp. 4975-4981 ◽  
Author(s):  
Lorena Rodríguez-Rubio ◽  
Hans Gerstmans ◽  
Simon Thorpe ◽  
Stéphane Mesnage ◽  
Rob Lavigne ◽  
...  

ABSTRACTBacteriophage-encoded endolysins are highly diverse enzymes that cleave the bacterial peptidoglycan layer. Current research focuses on their potential applications in medicine, in food conservation, and as biotechnological tools. Despite the wealth of applications relying on the use of endolysin, little is known about the enzymatic properties of these enzymes, especially in the case of endolysins of bacteriophages infecting Gram-negative species. Automated genome annotations therefore remain to be confirmed. Here, we report the biochemical analysis and cleavage site determination of a novelSalmonellabacteriophage endolysin, Gp110, which comprises an uncharacterizeddomain ofunknownfunction (DUF3380; pfam11860) in its C terminus and shows a higher specific activity (34,240 U/μM) than that of 14 previously characterized endolysins active against peptidoglycan from Gram-negative bacteria (corresponding to 1.7- to 364-fold higher activity). Gp110 is a modular endolysin with an optimal pH of enzymatic activity of pH 8 and elevated thermal resistance. Reverse-phase high-performance liquid chromatography (RP-HPLC) analysis coupled to mass spectrometry showed that DUF3380 hasN-acetylmuramidase (lysozyme) activity cleaving the β-(1,4) glycosidic bond betweenN-acetylmuramic acid andN-acetylglucosamine residues. Gp110 is active against directly cross-linked peptidoglycans with various peptide stem compositions, making it an attractive enzyme for developing novel antimicrobial agents.IMPORTANCEWe report the functional and biochemical characterization of theSalmonellaphage endolysin Gp110. This endolysin has a modular structure with an enzymatically active domain and a cell wall binding domain. The enzymatic activity of this endolysin exceeds that of all other endolysins previously characterized using the same methods. A domain of unknown function (DUF3380) is responsible for this high enzymatic activity. We report that DUF3380 hasN-acetylmuramidase activity against directly cross-linked peptidoglycans with various peptide stem compositions. This experimentally verified activity allows better classification and understanding of the enzymatic activities of endolysins, which mostly are inferred by sequence similarities. Three-dimensional structure predictions for Gp110 suggest a fold that is completely different from that of known structures of enzymes with the same peptidoglycan cleavage specificity, making this endolysin quite unique. All of these features, combined with increased thermal resistance, make Gp110 an attractive candidate for engineering novel endolysin-based antibacterials.


2019 ◽  
Vol 31 (1) ◽  
pp. 68-88 ◽  
Author(s):  
Dale F. Duhan ◽  
Shannon B. Rinaldo ◽  
Natalia Velikova ◽  
Tim Dodd ◽  
Brent Trela

PurposeWine choices are not always fully understood by academic researchers or the industry. This paper aims to outline and test a theoretical model proposing that wine consumption may be dependent on differences in consumer expertise, the hospitality situation, characteristics of the wine itself and an interaction of these variables.Design/methodology/approachThree empirical studies (total sample size = 356) tested these theoretical propositions. Consumers with varying levels of wine knowledge were presented with experimental vignettes showing videos of wine opening and pouring and were asked to pair wines with hospitality situations.FindingsStudy 1 found that consumers with low product knowledge were more sensitive to hospitality situations and extrinsic product attributes (closures) than were the experts. Study 2 found that wine hospitality situations fall into three predicted categories, namely, food, friends and formality, although contrary to prediction, the presence of food was the weakest predictors. Study 3 demonstrated the robustness of the three-dimensional structure of wine hospitality situations.Practical implicationsThese studies provided important practical information because targeting various market segments requires the industry to know what product attributes are favored by different groups of consumers different situations.Originality/valuePrevious researchers have discussed the difficulty of measuring consumption situations. By limiting these studies to wine consumption within hospitality situations, the authors learned much about how consumers’ characteristics, product attributes and the situations interact to influence not only product assessments but also choices.


2016 ◽  
Vol 31 (7) ◽  
pp. 1152-1166 ◽  
Author(s):  
Rita Chiesa ◽  
Stefano Toderi ◽  
Paola Dordoni ◽  
Kene Henkens ◽  
Elena Maria Fiabane ◽  
...  

Purpose The purpose of this paper is to explore the relationship between organizational age stereotypes and occupational self-efficacy. First, the authors intend to test the measurement invariance of Henkens’s (2005) age stereotypes scale across two age group, respectively, under 50 and 50 years and older. Then, the moderator role of age groups in the relationship between age stereotypes and occupational self-efficacy is investigated. Design/methodology/approach The survey involved a large sample of 4,667 Italian bank sector’s employees. Findings The results show the invariance of the three dimensional structure of organizational stereotypes towards older workers scale: productivity, reliability and adaptability. Furthermore, the moderation is confirmed: the relationship between organizational age stereotypes and occupational self-efficacy is significant only for older respondents. Research limitations/implications Future studies should aim to replicate the findings with longitudinal designs. Practical implications The study suggests the importance to emphasize the positive characteristics of older workers and to reduce the presence of negative age stereotypes in the workplace, especially in order to foster the occupational self-efficacy of older workers. Originality/value The findings are especially relevant in view of the lack of evidence about the relationship between age stereotypes and occupational self-efficacy.


2012 ◽  
Vol 78 (7) ◽  
pp. 2200-2212 ◽  
Author(s):  
Hannes Leisch ◽  
Rong Shi ◽  
Stephan Grosse ◽  
Krista Morley ◽  
Hélène Bergeron ◽  
...  

ABSTRACTA dimeric Baeyer-Villiger monooxygenase (BVMO) catalyzing the lactonization of 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-coenzyme A (CoA), a key intermediate in the metabolism of camphor byPseudomonas putidaATCC 17453, had been initially characterized in 1983 by Ougham and coworkers (H. J. Ougham, D. G. Taylor, and P. W. Trudgill, J. Bacteriol. 153:140–152, 1983). Here we cloned and overexpressed the 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase (OTEMO) inEscherichia coliand determined its three-dimensional structure with bound flavin adenine dinucleotide (FAD) at a 1.95-Å resolution as well as with bound FAD and NADP+at a 2.0-Å resolution. OTEMO represents the first homodimeric type 1 BVMO structure bound to FAD/NADP+. A comparison of several crystal forms of OTEMO bound to FAD and NADP+revealed a conformational plasticity of several loop regions, some of which have been implicated in contributing to the substrate specificity profile of structurally related BVMOs. Substrate specificity studies confirmed that the 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetic acid coenzyme A ester is preferred over the free acid. However, the catalytic efficiency (kcat/Km) favors 2-n-hexyl cyclopentanone (4.3 × 105M−1s−1) as a substrate, although its affinity (Km= 32 μM) was lower than that of the CoA-activated substrate (Km= 18 μM). In whole-cell biotransformation experiments, OTEMO showed a unique enantiocomplementarity to the action of the prototypical cyclohexanone monooxygenase (CHMO) and appeared to be particularly useful for the oxidation of 4-substituted cyclohexanones. Overall, this work extends our understanding of the molecular structure and mechanistic complexity of the type 1 family of BVMOs and expands the catalytic repertoire of one of its original members.


2021 ◽  
Author(s):  
Alana Burrell ◽  
Virginia Marugan-Hernandez ◽  
Flavia Moreira-Leite ◽  
David J P Ferguson ◽  
Fiona M Tomley ◽  
...  

The apical complex of apicomplexan parasites is essential for host cell invasion and intracellular survival and as the site of regulated exocytosis from specialised secretory organelles called rhoptries and micronemes. Despite its importance, there is little data on the three-dimensional organisation and quantification of these organelles within the apical complex or how they are trafficked to this specialised region of plasma membrane for exocytosis. In coccidian apicomplexans there is an additional tubulin-containing hollow barrel structure, the conoid, which provides a structural gateway for this specialised secretion. Using a combination of cellular electron tomography and serial block face-scanning electron microscopy (SBF-SEM) we have reconstructed the entire apical end of Eimeria tenella sporozoites. We discovered that conoid fibre number varied, but there was a fixed spacing between fibres, leading to conoids of different sizes. Associated apical structures varied in size to accommodate a larger or smaller conoid diameter. However, the number of subpellicular microtubules on the apical polar ring surrounding the conoid did not vary, suggesting a control of apical complex size. We quantified the number and location of rhoptries and micronemes within cells and show a highly organised gateway for trafficking and docking of rhoptries, micronemes and vesicles within the conoid around a set of intra-conoidal microtubules. Finally, we provide ultrastructural evidence for fusion of rhoptries directly through the parasite plasma membrane early in infection and the presence of a pore in the parasitophorous vacuole membrane, providing a structural explanation for how rhoptry proteins (ROPs) may be trafficked between the parasite and the host cytoplasm


2014 ◽  
Vol 80 (24) ◽  
pp. 7561-7573 ◽  
Author(s):  
Jean-Baptiste Fournier ◽  
Etienne Rebuffet ◽  
Ludovic Delage ◽  
Romain Grijol ◽  
Laurence Meslet-Cladière ◽  
...  

ABSTRACTVanadium haloperoxidases (VHPO) are key enzymes that oxidize halides and are involved in the biosynthesis of organo-halogens. Until now, only chloroperoxidases (VCPO) and bromoperoxidases (VBPO) have been characterized structurally, mainly from eukaryotic species. Three putative VHPO genes were predicted in the genome of the flavobacteriumZobellia galactanivorans, a marine bacterium associated with macroalgae. In a phylogenetic analysis, these putative bacterial VHPO were closely related to other VHPO from diverse bacterial phyla but clustered independently from eukaryotic algal VBPO and fungal VCPO. Two of these bacterial VHPO, heterogeneously produced inEscherichia coli, were found to be strictly specific for iodide oxidation. The crystal structure of one of these vanadium-dependent iodoperoxidases, Zg-VIPO1, was solved by multiwavelength anomalous diffraction at 1.8 Å, revealing a monomeric structure mainly folded into α-helices. This three-dimensional structure is relatively similar to those of VCPO of the fungusCurvularia inaequalisand ofStreptomycessp. and is superimposable onto the dimeric structure of algal VBPO. Surprisingly, the vanadate binding site of Zg-VIPO1 is strictly conserved with the fungal VCPO active site. Using site-directed mutagenesis, we showed that specific amino acids and the associated hydrogen bonding network around the vanadate center are essential for the catalytic properties and also the iodide specificity of Zg-VIPO1. Altogether, phylogeny and structure-function data support the finding that iodoperoxidase activities evolved independently in bacterial and algal lineages, and this sheds light on the evolution of the VHPO enzyme family.


2015 ◽  
Vol 81 (8) ◽  
pp. 2910-2918 ◽  
Author(s):  
Jeella Z. Acedo ◽  
Marco J. van Belkum ◽  
Christopher T. Lohans ◽  
Ryan T. McKay ◽  
Mark Miskolzie ◽  
...  

ABSTRACTAcidocin B, a bacteriocin produced byLactobacillus acidophilusM46, was originally reported to be a linear peptide composed of 59 amino acid residues. However, its high sequence similarity to gassericin A, a circular bacteriocin fromLactobacillus gasseriLA39, suggested that acidocin B might be circular as well. Acidocin B was purified from culture supernatant by a series of hydrophobic interaction chromatographic steps. Its circular nature was ascertained by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry and tandem mass spectrometry (MS/MS) sequencing. The peptide sequence was found to consist of 58 amino acids with a molecular mass of 5,621.5 Da. The sequence of the acidocin B biosynthetic gene cluster was also determined and showed high nucleotide sequence similarity to that of gassericin A. The nuclear magnetic resonance (NMR) solution structure of acidocin B in sodium dodecyl sulfate micelles was elucidated, revealing that it is composed of four α-helices of similar length that are folded to form a compact, globular bundle with a central pore. This is a three-dimensional structure for a member of subgroup II circular bacteriocins, which are classified based on their isoelectric points of ∼7 or lower. Comparison of acidocin B with carnocyclin A, a subgroup I circular bacteriocin with four α-helices and a pI of 10, revealed differences in the overall folding. The observed variations could be attributed to inherent diversity in their physical properties, which also required the use of different solvent systems for three-dimensional structural elucidation.


2019 ◽  
Vol 11 (2) ◽  
pp. 217-234 ◽  
Author(s):  
Maria Karakasnaki ◽  
Evangelos Psomas ◽  
Nancy Bouranta

Purpose This study aims to investigate the interrelationships among organizational culture and service quality by applying the SERVQUAL instrument under different levels of competitive intensity in the shipping industry context. Design/methodology/approach This study used the questionnaire investigation method to evaluate the hypothesized relationships. The authors utilized widely accepted and validated instruments as identified in the literature to measure the constructs under examination. The sample consisted of 684 shipping organizations located in Greece. The factorial structures of the constructs were identified through exploratory and confirmatory factor analyses, while the examined relationships were established through regression analyses. Findings The findings argue in favor of a parsimonious three-dimensional structure of the SERVQUAL instrument in the shipping industry context, illustrate the associations among the different types of organizational culture and the dimensions of service quality and explicate how the former impacts the latter. Moreover, the findings showed that the above-mentioned interrelationships are conditioned by the varying levels of competitive intensity. Originality/value Although much research and writing has occurred on the topics of service quality and organizational culture, relatively less is known about their interrelationships, that is how a company’s culture relates to the service quality offered especially under different levels of competitive intensity. Thus, the current study aims to fill in this gap in the literature and empirically address the need to look at the interrelationships among the theoretical constructs under examination.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Brittany A. Niccum ◽  
Heewook Lee ◽  
Wazim MohammedIsmail ◽  
Haixu Tang ◽  
Patricia L. Foster

ABSTRACTMutation accumulation experiments followed by whole-genome sequencing have revealed that, for several bacterial species, the rate of base-pair substitutions (BPSs) is not constant across the chromosome but varies in a wave-like pattern that is symmetrical about the origin of replication. The experiments reported here demonstrated that, inEscherichia coli, several interacting factors determine the wave. The origin is a major driver of BPS rates. When it is relocated, the BPS rates in a 1,000-kb region surrounding the new origin reproduce the pattern that surrounds the normal origin. However, the pattern across distant regions of the chromosome is unaltered and thus must be determined by other factors. Increasing the deoxynucleoside triphosphate (dNTP) concentration shifts the wave pattern away from the origin, supporting the hypothesis that fluctuations in dNTP pools coincident with replication firing contribute to the variations in the mutation rate. The nucleoid binding proteins (HU and Fis) and the terminus organizing protein (MatP) are also major factors. These proteins alter the three-dimensional structure of the DNA, and results suggest that mutation rates increase when highly structured DNA is replicated. Biases in error correction by proofreading and mismatch repair, both of which may be responsive to dNTP concentrations and DNA structure, also are major determinants of the wave pattern. These factors should apply to most bacterial and, possibly, eukaryotic genomes and suggest that different areas of the genome evolve at different rates.IMPORTANCEIt has been found in several species of bacteria that the rate at which single base pairs are mutated is not constant across the genome but varies in a wave-like pattern that is symmetrical about the origin of replication. UsingEscherichia colias our model system, we show that this pattern is the result of several interconnected factors. First, the timing and progression of replication are important in determining the wave pattern. Second, the three-dimensional structure of the DNA is also a factor, and the results suggest that mutation rates increase when highly structured DNA is replicated. Finally, biases in error correction, which may be responsive both to the progression of DNA synthesis and to DNA structure, are major determinants of the wave pattern. These factors should apply to most bacterial and, possibly, eukaryotic genomes and suggest that different areas of the genome evolve at different rates.


Sign in / Sign up

Export Citation Format

Share Document