scholarly journals The Cell End Marker Protein TeaC Is Involved in Growth Directionality and Septation in Aspergillus nidulans

2009 ◽  
Vol 8 (7) ◽  
pp. 957-967 ◽  
Author(s):  
Yuhei Higashitsuji ◽  
Saturnino Herrero ◽  
Norio Takeshita ◽  
Reinhard Fischer

ABSTRACT Polarized growth in filamentous fungi depends on the correct spatial organization of the microtubule (MT) and actin cytoskeleton. In Schizosaccharomyces pombe it was shown that the MT cytoskeleton is required for the delivery of so-called cell end marker proteins, e.g., Tea1 and Tea4, to the cell poles. Subsequently, these markers recruit several proteins required for polarized growth, e.g., a formin, which catalyzes actin cable formation. The latest results suggest that this machinery is conserved from fission yeast to Aspergillus nidulans. Here, we have characterized TeaC, a putative homologue of Tea4. Sequence identity between TeaC and Tea4 is only 12.5%, but they both share an SH3 domain in the N-terminal region. Deletion of teaC affected polarized growth and hyphal directionality. Whereas wild-type hyphae grow straight, hyphae of the mutant grow in a zig-zag way, similar to the hyphae of teaA deletion (tea1) strains. Some small, anucleate compartments were observed. Overexpression of teaC repressed septation and caused abnormal swelling of germinating conidia. In agreement with the two roles in polarized growth and in septation, TeaC localized to hyphal tips and to septa. TeaC interacted with the cell end marker protein TeaA at hyphal tips and with the formin SepA at hyphal tips and at septa.

Botany ◽  
2013 ◽  
Vol 91 (7) ◽  
pp. 467-477 ◽  
Author(s):  
Md. Kausar Alam ◽  
Susan G.W. Kaminskyj

Saccharomyces cerevisiae Hansen GAL1 (galactokinase) generates galactose-1-phosphate; GAL7 (galactose-1-phosphate uridylyltransferase) transfers UDP between galactose or glucose and their respective sugar-1-phosphate conjugates, and both are essential on galactose. Aspergillus nidulans ANID_04957 has 41% amino acid sequence identity with GAL1; ANID_06182 has 50% sequence identity with GAL7. The names Aspergillus nidulans GalE (galactokinase) and GalD (galactose-1-phosphate uridylyltransferase) are consistent with prior studies. Complemented galDΔ:ScGAL7 and galEΔ:ScGAL1 strains had wild-type phenotype, demonstrating functional homology. The galD5 and galE9 alleles were truncated. Strains galDΔ and galD5 were impaired on minimal medium containing 1% galactose (MM-Gal) at pH 7.5 and did not grow on MM-Gal pH 4.5. Strains galEΔ and galE9 grew on MM-Gal at both pH levels. Strains galDΔ and galEΔ produced wild-type conidiophores on minimal medium containing 1% glucose (MM-Glu) but few spores; for both, sporulation was lower on MM-Gal pH 7.5. GalD-GFP (green fluorescent protein) and GalE-GFP were cytosolic and upregulated on MM-Gal, consistent with quantitative real-time polymerase chain reaction. Galactofuranose immunolocalization in galDΔ resembled wild type on MM-Glu but was reduced on MM-Gal. The galEΔ strains had immunolocalizable Galf on all these media. Strains galDΔ and galEΔ were more sensitive to calcofluor, caspofungin, and itraconazole on MM-Gal. Neither galD nor galE is essential on galactose at high pH, implying additional routes for galactose metabolism in Aspergillus. Aspergillus galactose metabolism is more complex than that of S. cerevisiae.


1995 ◽  
Vol 128 (4) ◽  
pp. 577-587 ◽  
Author(s):  
C A McGoldrick ◽  
C Gruver ◽  
G S May

We have identified and cloned a novel essential myosin I in Aspergillus nidulans called myoA. The 1,249-amino acid predicted polypeptide encoded by myoA is most similar to the amoeboid myosins I. Using affinity-purified antibodies against the unique myosin I carboxyl terminus, we have determined that MYOA is enriched at growing hyphal tips. Disruption of myoA by homologous recombination resulted in a diploid strain heterozygous for the myoA gene disruption. We can recover haploids with an intact myoA gene from these strains, but never haploids that are myoA disrupted. These data indicated that myoA encodes an essential myosin I, and this has allowed us to use a unique approach to studying myosin I function. We have developed conditionally null myoA strains in which myoA expression is regulated by the alcA alcohol dehydrogenase promoter. A conditionally lethal strain germinated on inducing medium grows as wild type, displaying polarized growth by apical extension. However, growth of the same myoA mutant strain on repressing medium results in enlarged cells incapable of hyphal extension, and these cells eventually die. Under repressing conditions, this strain also displays reduced levels of secreted acid phosphatase. The mutant phenotype indicates that myoA plays a critical role in polarized growth and secretion.


2008 ◽  
Vol 19 (1) ◽  
pp. 339-351 ◽  
Author(s):  
Norio Takeshita ◽  
Yuhei Higashitsuji ◽  
Sven Konzack ◽  
Reinhard Fischer

In filamentous fungi, hyphal extension depends on the continuous delivery of vesicles to the growing tip. Here, we describe the identification of two cell end marker proteins, TeaA and TeaR, in Aspergillus nidulans, corresponding to Tea1 and Mod5 in Schizosaccharomyces pombe. Deletion of teaA or teaR caused zig-zag-growing and meandering hyphae, respectively. The Kelch-repeat protein TeaA, the putatively prenylated TeaR protein, and the formin SepA were highly concentrated in the Spitzenkörper, a vesicle transit station at the tip, and localized along the tip membrane. TeaA localization at tips depended on microtubules, and TeaA was required for microtuble convergence in the hyphal apex. The CENP-E family kinesin KipA was necessary for proper localization of TeaA and TeaR, but not for their transportation. TeaA and TeaR localization were interdependent. TeaA interacted in vivo with TeaR, and TeaA colocalized with SepA. Sterol-rich membrane domains localized at the tip in teaA and teaR mutants like in wild type, and filipin treatment caused mislocalization of both proteins. This suggests that sterol-rich membrane domains determine cell end factor destinations and thereby polarized growth.


2021 ◽  
Vol 22 (10) ◽  
pp. 5116
Author(s):  
Hideki Katow ◽  
Tomoko Katow ◽  
Hiromi Yoshida ◽  
Masato Kiyomoto

The multiple functions of the wild type Huntington’s disease protein of the sea urchin Hemicentrotus pulcherrimus (Hp-Htt) have been examined using the anti-Hp-Htt antibody (Ab) raised against synthetic oligopeptides. According to immunoblotting, Hp-Htt was detected as a single band at around the 350 kDa region at the swimming blastula stage to the prism larva stage. From the 2-arm pluteus stage (2aPL), however, an additional smaller band at the 165 kDa region appeared. Immunohistochemically, Hp-Htt was detected in the nuclei and the nearby cytoplasm of the ectodermal cells from the swimming blastula stage, and the blastocoelar cells from the mid-gastrula stage. The Ab-positive signal was converged to the ciliary band-associated strand (CBAS). There, it was accompanied by several CBAS-marker proteins in the cytoplasm, such as glutamate decarboxylase. Application of Hp-Htt morpholino (Hp-Htt-MO) has resulted in shortened larval arms, accompanied by decreased 5-bromo-2-deoxyuridin (BrdU) incorporation by the ectodermal cells of the larval arms. Hp-Htt-MO also resulted in lowered ciliary beating activity, accompanied by a disordered swirling pattern formation around the body. These Hp-Htt-MO-induced deficiencies took place after the onset of CBAS system formation at the larval arms. Thus, Hp-Htt is involved in cell proliferation and the ciliary beating pattern regulation signaling system in pluteus larvae.


1992 ◽  
Vol 12 (9) ◽  
pp. 3827-3833 ◽  
Author(s):  
T H Adams ◽  
W A Hide ◽  
L N Yager ◽  
B N Lee

In contrast to many other cases in microbial development, Aspergillus nidulans conidiophore production initiates primarily as a programmed part of the life cycle rather than as a response to nutrient deprivation. Mutations in the acoD locus result in "fluffy" colonies that appear to grow faster than the wild type and proliferate as undifferentiated masses of vegetative cells. We show that unlike wild-type strains, acoD deletion mutants are unable to make conidiophores under optimal growth conditions but can be induced to conidiate when growth is nutritionally limited. The requirement for acoD in conidiophore development occurs prior to activation of brlA, a primary regulator of development. The acoD transcript is present both in vegetative hyphae prior to developmental induction and in developing cultures. However, the effects of acoD mutations are detectable only after developmental induction. We propose that acoD activity is primarily controlled at the posttranscriptional level and that it is required to direct developmentally specific changes that bring about growth inhibition and activation of brlA expression to result in conidiophore development.


2009 ◽  
Vol 8 (10) ◽  
pp. 1475-1485 ◽  
Author(s):  
Thanyanuch Kriangkripipat ◽  
Michelle Momany

ABSTRACT Protein O-mannosyltransferases (Pmts) initiate O-mannosyl glycan biosynthesis from Ser and Thr residues of target proteins. Fungal Pmts are divided into three subfamilies, Pmt1, -2, and -4. Aspergillus nidulans possesses a single representative of each Pmt subfamily, pmtA (subfamily 2), pmtB (subfamily 1), and pmtC (subfamily 4). In this work, we show that single Δpmt mutants are viable and have unique phenotypes and that the ΔpmtA ΔpmtB double mutant is the only viable double mutant. This makes A. nidulans the first fungus in which all members of individual Pmt subfamilies can be deleted without loss of viability. At elevated temperatures, all A. nidulans Δpmt mutants show cell wall-associated defects and increased sensitivity to cell wall-perturbing agents. The Δpmt mutants also show defects in developmental patterning. Germ tube emergence is early in ΔpmtA and more frequent in ΔpmtC mutants than in the wild type. In ΔpmtB mutants, intrahyphal hyphae develop. All Δpmt mutants show distinct conidiophore defects. The ΔpmtA strain has swollen vesicles and conidiogenous cells, the ΔpmtB strain has swollen conidiophore stalks, and the ΔpmtC strain has dramatically elongated conidiophore stalks. We also show that AN5660, an ortholog of Saccharomyces cerevisiae Wsc1p, is modified by PmtA and PmtC. The Δpmt phenotypes at elevated temperatures, increased sensitivity to cell wall-perturbing agents and restoration to wild-type growth with osmoticum suggest that A. nidulans Pmts modify proteins in the cell wall integrity pathway. The altered developmental patterns in Δpmt mutants suggest that A. nidulans Pmts modify proteins that serve as spatial cues.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1083-1093
Author(s):  
Jeong-Ah Seo ◽  
Yajun Guan ◽  
Jae-Hyuk Yu

Abstract Asexual sporulation (conidiation) in the filamentous fungus Aspergillus nidulans requires the early developmental activator fluG. Loss of fluG results in the blockage of both conidiation and production of the mycotoxin sterigmatocystin (ST). To investigate molecular mechanisms of fluG-dependent developmental activation, 40 suppressors of fluG (SFGs) that conidiate without fluG have been isolated and characterized. Genetic analyses showed that an individual suppression is caused by a single second-site mutation, and that all sfg mutations but one are recessive. Pairwise meiotic crosses grouped mutations to four loci, 31 of them to sfgA, 6 of them to sfgB, and 1 each to sfgC and sfgD, respectively. The only dominant mutation, sfgA38, also mapped to the sfgA locus, suggesting a dominant negative mutation. Thirteen sfgA and 1 sfgC mutants elaborated conidiophores in liquid submerged culture, indicating that loss of either of these gene functions not only bypasses fluG function but also results in hyperactive conidiation. While sfg mutants show varying levels of restored conidiation, all recovered the ability to produce ST at near wild-type levels. The fact that at least four loci are defined by recessive sfg mutations indicates that multiple genes negatively regulate conidiation downstream of fluG and that the activity of fluG is required to remove such repressive effects.


Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1027-1036 ◽  
Author(s):  
Cletus A D'Souza ◽  
Bee Na Lee ◽  
Thomas H Adams

Abstract We showed previously that a ΔfluG mutation results in a block in Aspergillus nidulans asexual sporulation and that overexpression of fluG activates sporulation in liquid-submerged culture, a condition that does not normally support sporulation of wild-type strains. Here we demonstrate that the entire N-terminal region of FluG (∼400 amino acids) can be deleted without affecting sporulation, indicating that FluG activity resides in the C-terminal half of the protein, which bears significant similarity with GSI-type glutamine synthetases. While FluG has no apparent role in glutamine biosynthesis, we propose that it has an enzymatic role in sporulation factor production. We also describe the isolation of dominant suppressors of ΔfluG(dsg) that should identify components acting downstream of FluG and thereby define the function of FluG in sporulation. The dsgA1 mutation also suppresses the developmental defects resulting from ΔflbA and dominant activating fadA mutations, which both cause constitutive induction of the mycelial proliferation pathway. However, dsgA1 does not suppress the negative influence of these mutations on production of the aflatoxin precursor, sterigmatocystin, indicating that dsgA1 is specific for asexual development. Taken together, our studies define dsgA as a novel component of the asexual sporulation pathway.


2005 ◽  
Vol 25 (15) ◽  
pp. 6722-6733 ◽  
Author(s):  
Sandrine Roy ◽  
Sarah Plowman ◽  
Barak Rotblat ◽  
Ian A. Prior ◽  
Cornelia Muncke ◽  
...  

ABSTRACT H-ras is anchored to the plasma membrane by two palmitoylated cysteine residues, Cys181 and Cys184, operating in concert with a C-terminal S-farnesyl cysteine carboxymethylester. Here we demonstrate that the two palmitates serve distinct biological roles. Monopalmitoylation of Cys181 is required and sufficient for efficient trafficking of H-ras to the plasma membrane, whereas monopalmitoylation of Cys184 does not permit efficient trafficking beyond the Golgi apparatus. However, once at the plasma membrane, monopalmitoylation of Cys184 supports correct GTP-regulated lateral segregation of H-ras between cholesterol-dependent and cholesterol-independent microdomains. In contrast, monopalmitoylation of Cys181 dramatically reverses H-ras lateral segregation, driving GTP-loaded H-ras into cholesterol-dependent microdomains. Intriguingly, the Cys181 monopalmitoylated H-ras anchor emulates the GTP-regulated microdomain interactions of N-ras. These results identify N-ras as the Ras isoform that normally signals from lipid rafts but also reveal that spacing between palmitate and prenyl groups influences anchor interactions with the lipid bilayer. This concept is further supported by the different plasma membrane affinities of the monopalmitoylated anchors: Cys181-palmitate is equivalent to the dually palmitoylated wild-type anchor, whereas Cys184-palmitate is weaker. Thus, membrane affinity of a palmitoylated anchor is a function both of the hydrophobicity of the lipid moieties and their spatial organization. Finally we show that the plasma membrane affinity of monopalmitoylated anchors is absolutely dependent on cholesterol, identifying a new role for cholesterol in promoting interactions with the raft and nonraft plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document