scholarly journals Regulation of the Nucleocytoplasmic Distribution of Snf1-Gal83 Protein Kinase

2006 ◽  
Vol 5 (12) ◽  
pp. 1950-1956 ◽  
Author(s):  
Kristina Hedbacker ◽  
Marian Carlson

ABSTRACT Snf1 protein kinase containing the β subunit Gal83 is localized in the cytoplasm during growth of Saccharomyces cerevisiae cells in abundant glucose and accumulates in the nucleus in response to glucose limitation. Nuclear localization of Snf1-Gal83 requires activation of the Snf1 catalytic subunit and depends on Gal83, but in the snf1Δ mutant, Gal83 exhibits glucose-regulated nuclear accumulation. We show here that the N terminus of Gal83, which is divergent from those of the other β subunits, is necessary and sufficient for Snf1-independent, glucose-regulated localization. We identify a leucine-rich nuclear export signal in the N terminus and show that export depends on the Crm1 export receptor. We present evidence that catalytically inactive Snf1 promotes the cytoplasmic retention of Gal83 in glucose-grown cells through its interaction with the C terminus of Gal83; cytoplasmic localization of inactive Snf1-Gal83 maintains accessibility to the Snf1-activating kinases. Finally, we characterize the effects of glucose phosphorylation on localization. These studies define roles for Snf1 and Gal83 in determining the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase.

2000 ◽  
Vol 20 (10) ◽  
pp. 3510-3521 ◽  
Author(s):  
Kendra Plafker ◽  
Ian G. Macara

ABSTRACT The Ran binding protein RanBP1 is localized to the cytosol of interphase cells. A leucine-rich nuclear export signal (NES) near the C terminus of RanBP1 is essential to maintain this distribution. We now show that RanBP1 accumulates in nuclei of cells treated with the export inhibitor, leptomycin B, and collapse of the nucleocytoplasmic Ran:GTP gradient leads to equilibration of RanBP1 across the nuclear envelope. Low temperature prevents nuclear accumulation of RanBP1, suggesting that import does not occur via simple diffusion. Glutathione S-transferase (GST)–RanBP1(1-161), which lacks the NES, accumulates in the nucleus after cytoplasmic microinjection. In permeabilized cells, nuclear accumulation of GST-RanBP1(1-161) requires nuclear Ran:GTP but is not inhibited by a dominant interfering G19V mutant of Ran. Nuclear accumulation is enhanced by addition of exogenous karyopherins/importins or RCC1, both of which also enhance nuclear Ran accumulation. Import correlates with Ran concentration. Remarkably, an E37K mutant of RanBP1 does not import into the nuclei under any conditions tested despite the fact that it can form a ternary complex with Ran and importin β. These data indicate that RanBP1 translocates through the pores by an active, nonclassical mechanism and requires Ran:GTP for nuclear accumulation. Shuttling of RanBP1 may function to clear nuclear pores of Ran:GTP, to prevent premature release of import cargo from transport receptors.


2002 ◽  
Vol 22 (24) ◽  
pp. 8514-8526 ◽  
Author(s):  
Alanna L. Eilers ◽  
Eleanor Sundwall ◽  
Monica Lin ◽  
April A. Sullivan ◽  
Donald E. Ayer

ABSTRACT Among members of the bHLHZip family of transcriptional regulators, MondoA and Mlx have the unique property of cytoplasmic localization. We have proposed that MondoA-Mlx heterodimers accumulate in the nucleus in response to extracellular cues. Our previous work implicated heterodimerization between MondoA and Mlx and a conserved domain in the N terminus of MondoA as important determinants of MondoA-Mlx subcellular localization. MondoA and Mlx share sequence similarity in their bHLHZip domains and C termini. Here we show that for both MondoA and Mlx, this C-terminal domain has cytoplasmic localization activity that is required by the protein monomers to accumulate in the cytoplasm. This C-terminal domain is also a novel dimerization interface that functions independently of the leucine zipper to mediate heterotypic interactions between MondoA and Mlx. Dimerization between MondoA and Mlx inactivates the cytoplasmic localization activity of their C termini and is necessary for the heterocomplex to accumulate in the nucleus. MondoA-Mlx heterodimers, while poised for nuclear entry, are retained in the cytoplasm by conserved domains in the N terminus of MondoA. Mondo conserved regions (MCRs) II and III contribute to cytoplasmic localization of MondoA-Mlx by functioning as a CRM1-dependent nuclear export signal and as a novel binding site for 14-3-3 family members, respectively. We propose that the nuclear accumulation of MondoA and Mlx is a two-step process. First, heterodimerization abolishes the cytoplasmic localization activity of their C termini. Second, an extracellular signal(s) must overcome the cytoplasmic localization function imparted by CRM1 and 14-3-3 binding to the N terminus of MondoA.


2001 ◽  
Vol 114 (17) ◽  
pp. 3155-3166 ◽  
Author(s):  
David A. Eberhard ◽  
Larry R. Karns ◽  
Scott R. VandenBerg ◽  
Carl E. Creutz

This study investigated mechanisms controlling the nuclear-cytoplasmic partitioning of annexin II (AnxII). AnxII and its ligand, p11, were localized by immunofluorescence to the cytoplasmic compartment of U1242MG cells, with minimal AnxII or p11 detected within nuclei. Similarly, GFP-AnxII and GFP-p11 chimeras localized to the endogenous proteins. Likewise, GFP-AnxII(1-22) was excluded from nuclei, whereas GFP-AnxII(23-338) and GFP alone were distributed throughout the cells. Immunoprecipitation and biochemical studies showed that GFP-AnxII did not form heteromeric complexes with endogenous p11 and AnxII. Thus, the AnxII N-tail is necessary and sufficient to cause nuclear exclusion of the GFP fusion protein but this does not involve p11 binding. A nuclear export signal consensus sequence was found in the AnxII 3-12 region. The consensus mutant GFP-AnxII(L10A/L12A) confirmed that these residues are necessary for nuclear exclusion. The nuclear exclusion of GFP-AnxII(1-22) was temperature-dependent and reversible, and the nuclear export inhibitor leptomycin B (LmB) caused GFP-AnxII or overexpressed AnxII monomer to accumulate in nuclei. Therefore, AnxII monomer can enter the nucleus and is actively exported. However, LmB had little effect on the localization of AnxII/p11 complex in U1242MG cells, indicating that the complex is sequestered in the cytoplasm. By contrast, LmB treatment of v-src-transformed fibroblasts caused endogenous AnxII to accumulate in nuclei. The LmB-induced nuclear accumulation of AnxII was accelerated by pervanadate and inhibited by genistein, suggesting that phosphorylation promotes nuclear entry of AnxII. Thus, nuclear exclusion of AnxII results from nuclear export of the monomer and sequestration of AnxII/p11 complex, and may be modulated by phosphorylation.


2000 ◽  
Vol 349 (2) ◽  
pp. 403-407 ◽  
Author(s):  
Lihua ZHENG ◽  
Long YU ◽  
Qiang TU ◽  
Min ZHANG ◽  
Hua HE ◽  
...  

Two novel members of the human cAMP-dependent protein kinase inhibitor (PKI) gene family, PKIB and PKIG, were cloned. The deduced proteins showed 70% and 90% identity with mouse PKIβ and PKIγ respectively. Both the already identified pseudosubstrate site and leucine-rich nuclear export signal motifs were defined from the 11 PKIs of different species. The PKIB and PKIG genes were mapped respectively to chromosome 6q21-22.1, using a radiation hybrid GB4 panel, and to chromosome 20q13.12-13.13, using a Stanford G3 panel. Northern-blot analysis of three PKI isoforms, including the PKIA identified previously, revealed significant differences in their expression patterns. PKIB had two transcripts of 1.9 kb and 1.4 kb. The former transcript was abundant in both placenta and brain and the latter was expressed most abundantly in placenta, highly in brain, heart, liver, pancreas, moderately in kidney, skeletal muscle and colon, and very little in the other eight tissues tested. PKIG was widely expressed as a 1.5-kb transcript with the highest level in heart, hardly detectable in thymus and peripheral blood leucocytes and was moderately expressed in the other tissues, with slightly different levels. However, PKIA was specifically expressed as two transcripts of 3.3 kb and 1.5 kb in heart and skeletal muscle. The distinct expression patterns of the three PKIs suggest that their roles in various tissues are probably different.


2011 ◽  
Vol 10 (3) ◽  
pp. 313-319 ◽  
Author(s):  
Yang Liu ◽  
Xinjing Xu ◽  
Marian Carlson

ABSTRACT The Saccharomyces cerevisiae SNF1 protein kinase, a member of the SNF1/AMP-activated protein kinase (AMPK) family, is activated by three kinases, Sak1, Tos3, and Elm1, which phosphorylate the Snf1 catalytic subunit on Thr-210 in response to glucose limitation and other stresses. Sak1 is the primary Snf1-activating kinase and is associated with Snf1 in a complex. Here we examine the interaction of Sak1 with SNF1. We report that Sak1 coimmunopurifies with the Snf1 catalytic subunit from extracts of both glucose-replete and glucose-limited cultures and that interaction occurs independently of the phosphorylation state of Snf1 Thr-210, Snf1 catalytic activity, and other SNF1 subunits. Sak1 interacts with the Snf1 kinase domain, and nonconserved sequences C terminal to the Sak1 kinase domain mediate interaction with Snf1 and augment the phosphorylation and activation of Snf1. The Sak1 C terminus is modified in response to glucose depletion, dependent on SNF1 activity. Replacement of the C terminus of Elm1 (or Tos3) with that of Sak1 enhanced the ability of the Elm1 kinase domain to interact with and phosphorylate Snf1. These findings indicate that the C terminus of Sak1 confers its function as the primary Snf1-activating kinase and suggest that the physical association of Sak1 with SNF1 facilitates responses to environmental change.


2002 ◽  
Vol 22 (20) ◽  
pp. 6931-6945 ◽  
Author(s):  
Ole Morten Seternes ◽  
Bjarne Johansen ◽  
Beate Hegge ◽  
Mona Johannessen ◽  
Stephen M. Keyse ◽  
...  

ABSTRACT The p38 mitogen-activated protein kinase (MAPK) pathway is an important mediator of cellular responses to environmental stress. Targets of p38 include transcription factors, components of the translational machinery, and downstream serine/threonine kinases, including MAPK-activated protein kinase 5 (MK5). Here we have used enhanced green fluorescent protein fusion proteins to analyze the subcellular localization of MK5. Although this protein is predominantly nuclear in unstimulated cells, MK5 shuttles between the nucleus and the cytoplasm. Furthermore, we have shown that the C-terminal domain of MK5 contains both a functional nuclear localization signal (NLS) and a leucine-rich nuclear export signal (NES), indicating that the subcellular distribution of this kinase reflects the relative activities of these two signals. In support of this, we have shown that stress-induced activation of the p38 MAPK stimulates the chromosomal region maintenance 1 protein-dependent nuclear export of MK5. This is regulated by both binding of p38 MAPK to MK5, which masks the functional NLS, and stress-induced phosphorylation of MK5 by p38 MAPK, which either activates or unmasks the NES. These properties may define the ability of MK5 to differentially phosphorylate both nuclear and cytoplasmic targets or alternatively reflect a mechanism whereby signals initiated by activation of MK5 in the nucleus may be transmitted to the cytoplasm.


2003 ◽  
Vol 23 (3) ◽  
pp. 975-987 ◽  
Author(s):  
Odile Filhol ◽  
Arsenio Nueda ◽  
Véronique Martel ◽  
Delphine Gerber-Scokaert ◽  
Maria José Benitez ◽  
...  

ABSTRACT Protein kinase CK2 is a multifunctional enzyme which has long been described as a stable heterotetrameric complex resulting from the association of two catalytic (α or α′) and two regulatory (β) subunits. To track the spatiotemporal dynamics of CK2 in living cells, we fused its catalytic α and regulatory β subunits with green fluorescent protein (GFP). Both CK2 subunits contain nuclear localization domains that target them independently to the nucleus. Imaging of stable cell lines expressing low levels of GFP-CK2α or GFP-CK2β revealed the existence of CK2 subunit subpopulations exhibiting differential dynamics. Once in the nucleus, they diffuse randomly at different rates. Unlike CK2β, CK2α can shuttle, showing the dynamic nature of the nucleocytoplasmic trafficking of the kinase. When microinjected in the cytoplasm, the isolated CK2 subunits are rapidly translocated into the nucleus, whereas the holoenzyme complex remains in this cell compartment, suggesting an intramolecular masking of the nuclear localization sequences that suppresses nuclear accumulation. However, binding of FGF-2 to the holoenzyme triggers its nuclear translocation. Since the substrate specificity of CK2α is dramatically changed by its association with CK2β, the control of the nucleocytoplasmic distribution of each subunit may represent a unique potential regulatory mechanism for CK2 activity.


2004 ◽  
Vol 78 (10) ◽  
pp. 5358-5367 ◽  
Author(s):  
Jason J. Rodriguez ◽  
Cristian D. Cruz ◽  
Curt M. Horvath

ABSTRACT The V proteins of Nipah virus and Hendra virus have been demonstrated to bind to cellular STAT1 and STAT2 proteins to form high-molecular-weight complexes that inhibit interferon (IFN)-induced antiviral transcription by preventing STAT nuclear accumulation. Analysis of the Nipah virus V protein has revealed a region between amino acids 174 and 192 that functions as a CRM1-dependent nuclear export signal (NES). This peptide is sufficient to complement an export-defective human immunodeficiency virus Rev protein, and deletion and substitution mutagenesis revealed that this peptide is necessary for both V protein shuttling and cytoplasmic retention of STAT1 and STAT2 proteins. However, the NES is not required for V-dependent IFN signaling inhibition. IFN signaling is blocked primarily by interaction between Nipah virus V residues 100 to 160 and STAT1 residues 509 to 712. Interaction with STAT2 requires a larger Nipah virus V segment between amino acids 100 and 300, but deletion of residues 230 to 237 greatly reduced STAT2 coprecipitation. Further, V protein interactions with cellular STAT1 is a prerequisite for STAT2 binding, and sequential immunoprecipitations demonstrate that V, STAT1, and STAT2 can form a tripartite complex. These findings characterize essential regions for Henipavirus V proteins that represent potential targets for therapeutic intervention.


2002 ◽  
Vol 158 (5) ◽  
pp. 849-854 ◽  
Author(s):  
Jan Peter Siebrasse ◽  
Elias Coutavas ◽  
Reiner Peters

Signal-dependent nuclear protein export was studied in perforated nuclei and isolated nuclear envelopes of Xenopus oocytes by optical single transporter recording. Manually isolated and purified oocyte nuclei were attached to isoporous filters and made permeable for macromolecules by perforation. Export of a recombinant protein (GG-NES) containing the nuclear export signal (NES) of the protein kinase A inhibitor through nuclear envelope patches spanning filter pores could be induced by the addition of GTP alone. Export continued against a concentration gradient, and was NES dependent and inhibited by leptomycin B and GTPγS, a nonhydrolyzable GTP analogue. Addition of recombinant RanBP3, a potential cofactor of CRM1-dependent export, did not promote GG-NES export at stoichiometric concentration but gradually inhibited export at higher concentrations. In isolated filter-attached nuclear envelopes, export of GG-NES was virtually abolished in the presence of GTP alone. However, a preformed export complex consisting of GG-NES, recombinant human CRM1, and RanGTP was rapidly exported. Unexpectedly, export was strongly reduced when the export complex contained RanGTPγS or RanG19V/Q69L-GTP, a GTPase-deficient Ran mutant. This paper shows that nuclear transport, previously studied in intact and permeabilized cells only, can be quantitatively analyzed in perforated nuclei and isolated nuclear envelopes.


2007 ◽  
Vol 81 (21) ◽  
pp. 11850-11860 ◽  
Author(s):  
Cahora Medina-Palazon ◽  
Henri Gruffat ◽  
Fabrice Mure ◽  
Odile Filhol ◽  
Valérie Vingtdeux-Didier ◽  
...  

ABSTRACT The Epstein-Barr Virus (EBV) early protein EB2 (also called BMLF1, Mta, or SM) promotes the nuclear export of a subset of early and late viral mRNAs and is essential for the production of infectious virions. We show here that in vitro, protein kinase CK2α and -β subunits bind both individually and, more efficiently, as a complex to the EB2 N terminus and that the CK2β regulatory subunit also interacts with the EB2 C terminus. Immunoprecipitated EB2 has CK2 activity that phosphorylates several sites within the 80 N-terminal amino acids of EB2, including Ser-55, -56, and -57, which are localized next to the nuclear export signal. EB2S3E, the phosphorylation-mimicking mutant of EB2 at these three serines, but not the phosphorylation ablation mutant EB2S3A, efficiently rescued the production of infectious EBV particles by HEK293BMLF1-KO cells harboring an EB2-defective EBV genome. The defect of EB2S3A in transcomplementing 293BMLF1-KO cells was not due to impaired nucleocytoplasmic shuttling of the mutated protein but was associated with a decrease in the cytoplasmic accumulation of several late viral mRNAs. Thus, EB2-mediated production of infectious EBV virions is regulated by CK2 phosphorylation at one or more of the serine residues Ser-55, -56, and -57.


Sign in / Sign up

Export Citation Format

Share Document