scholarly journals EppA, a Putative Substrate of DdERK2, Regulates Cyclic AMP Relay and Chemotaxis in Dictyostelium discoideum

2006 ◽  
Vol 5 (7) ◽  
pp. 1136-1146 ◽  
Author(s):  
Songyang Chen ◽  
Jeffrey E. Segall

ABSTRACT The mitogen-activated protein kinase DdERK2 is critical for cyclic AMP (cAMP) relay and chemotaxis to cAMP and folate, but the details downstream of DdERK2 are unclear. To search for targets of DdERK2 in Dictyostelium discoideum,32PO4 3−-labeled protein samples from wild-type and Dderk2 − cells were resolved by 2-dimensional electrophoresis. Mass spectrometry was used to identify a novel 45-kDa protein, named EppA (ERK2-dependent phosphoprotein A), as a substrate of DdERK2 in Dictyostelium. Mutation of potential DdERK2 phosphorylation sites demonstrated that phosphorylation on serine 250 of EppA is DdERK2 dependent. Changing serine 250 to alanine delayed development of Dictyostelium and reduced Dictyostelium chemotaxis to cAMP. Although overexpression of EppA had no significant effect on the development or chemotaxis of Dictyostelium, disruption of the eppA gene led to delayed development and reduced chemotactic responses to both cAMP and folate. Both eppA gene disruption and overexpression of EppA carrying the serine 250-to-alanine mutation led to inhibition of intracellular cAMP accumulation in response to chemoattractant cAMP, a pivotal process in Dictyostelium chemotaxis and development. Our studies indicate that EppA regulates extracellular cAMP-induced signal relay and chemotaxis of Dictyostelium.

1986 ◽  
Vol 6 (7) ◽  
pp. 2402-2408
Author(s):  
B Haribabu ◽  
R P Dottin

Extracellular molecules regulate gene expression in eucaryotes. Exogenous cyclic AMP (cAMP) affects the expression of a large number of developmentally regulated genes in Dictyostelium discoideum. Here, we determine the specificity of the receptor(s) which mediates gene expression by using analogs of cAMP. The order of potency with which these analogs affect the expression of specific genes is consistent with the specificity of their binding to a cell surface receptor and is distinct from their affinity for intracellular cAMP-dependent protein kinase. Dose-response curves with cAMP and adenosine 3',5'-monophosphorothioate, a nonhydrolyzable analog, revealed that the requirement for high concentrations of exogenous cAMP for regulating gene expression is due to the rapid degradation of cAMP by phosphodiesterase. The addition of low concentrations of cAMP (100 nM) or analogs in pulses also regulates gene expression. Both the genes that are positively regulated by exogenous cAMP and the discoidin gene, which is negatively regulated, respond to cAMP analogs to the same degree. Genes expressed in prespore or prestalk cells are also similarly regulated. These data suggest that the effects are mediated through the same receptor. The specificity of this receptor is indistinguishable from that of the well-characterized cell surface cAMP receptor.


1999 ◽  
Vol 338 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Hedley A. COPPOCK ◽  
Ali A. OWJI ◽  
Carol AUSTIN ◽  
Paul D. UPTON ◽  
Mary L. JACKSON ◽  
...  

Rat-2 fibroblasts demonstrate specific binding of 125I-labelled rat adrenomedullin (KD = 0.43nM; Bmax = 50fmol/mg of protein) in the absence of 125I-labelled calcitonin-gene-related peptide (CGRP) binding. Therefore Rat-2 cells were used to examine the pharmacology and signal transduction pathways of adrenomedullin receptors. We examined the effects of adrenomedullin, the CGRP receptor antagonist CGRP-(8–37) and the amylin antagonists AC187 and AC253 on receptor binding and cAMP production. AC253, AC187 and CGRP-(8–37) inhibited 125I-adrenomedullin binding, with respective IC50 values of 25±8, 129±39 and 214±56nM. Adrenomedullin dose-dependently increased intracellular cAMP (approximate EC50 = 1.0nM). CGRP-(8–37), AC253 and AC187 antagonized adrenomedullin-stimulated cAMP production at micromolar concentrations. Using kinase-substrate assays, Mono Q FPLC and ‘phospho-specific ’ Western blotting, we found that adrenomedullin alone abolished basal mitogen-activated protein kinase (MAPK) activity and dose-dependently inhibited platelet-derived-growth-factor-stimulated MAPK activity. Radioimmunoassay for adrenomedullin of media from Rat-2 cells showed a linear release of adrenomedullin-like immunoreactivity of 3.1fmol/h per 2×106 cells. Gel-filtration chromatography showed that this adrenomedullin-like immunoreactivity co-eluted with synthetic rat adrenomedullin. Northern blotting with a rat adrenomedullin cDNA probe was used to confirm the presence of adrenomedullin mRNA. However, neither Northern blotting nor reverse transcriptase–PCR showed the presence of the cloned adrenomedullin receptor (L1). We conclude that the Rat-2 cell line expresses a specific adrenomedullin receptor (coupled to cAMP production and regulation of MAPK) and secretes adrenomedullin, which may participate in a regulatory control loop.


Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 537-553 ◽  
Author(s):  
Angel Wai-mun Lee

Abstract Colony-stimulating factors (CSFs) promote the proliferation, differentiation, commitment, and survival of myeloid progenitors, whereas cyclic AMP (cAMP)-mediated signals frequently induce their growth arrest and apoptosis. The ERK/mitogen-activated protein kinase (MAPK) pathway is a target for both CSFs and cAMP. We investigated how costimulation by cAMP and colony-stimulating factor-1 (CSF-1) or interleukin-3 (IL-3) modulates MAPK in the myeloid progenitor cell line, 32D. cAMP dramatically increased ERK activity in the presence of CSF-1 or IL-3. IL-3 also synergized with cAMP to activate ERK in another myeloid cell line, FDC-P1. The increase in ERK activity was transmitted to a downstream target, p90rsk. cAMP treatment of 32D cells transfected with oncogenic Ras was found to recapitulate the superactivation of ERK seen with cAMP and CSF-1 or IL-3. ERK activation in the presence of cAMP did not appear to involve any of the Raf isoforms and was blocked by expression of dominant-negative MEK1 or treatment with a MEK inhibitor, PD98059. Although cAMP had an overall inhibitory effect on CSF-1–mediated proliferation and survival, the inhibition was markedly increased if ERK activation was blocked by PD98059. These findings suggest that upregulation of the ERK pathway is one mechanism induced by CSF-1 and IL-3 to protect myeloid progenitors from the growth-suppressive and apoptosis-inducing effects of cAMP elevations.


1990 ◽  
Vol 10 (7) ◽  
pp. 3297-3306 ◽  
Author(s):  
P C Ma ◽  
C H Siu

The EDTA-resistant cell-cell adhesion expressed at the aggregation stage of Dictyostelium discoideum is mediated by a cell surface glycoprotein of Mr 80,000 (gp80). The expression of gp80 is developmentally regulated by cyclic AMP (cAMP). In vitro nuclear run-on experiments show that transcription of the gp80 gene is initiated soon after the onset of development. The basal level of gp80 transcription is significantly augmented by exogenous cAMP pulses. Interestingly, in analog studies, 2'-deoxy-cAMP, 8-bromo-cAMP, and N6-monobutyryl-cAMP are all capable of inducing a rapid accumulation of gp80 mRNA, suggesting the presence of a unique cAMP receptor that responds equally well to these analogs. To determine whether intracellular cAMP plays a role in the regulation of gp80 expression, caffeine was used to block cAMP-induced receptor-mediated adenylate cyclase activation. Expression of gp80 mRNA was blocked in caffeine-treated cells but could be substantially restored by treatment with exogenous cAMP pulses, suggesting that adenylate cyclase activation is not required. gp80 expression was also examined in the signal transduction mutants synag 7 and frigid A. In both mutants, gp80 was expressed at the basal level. Pulses of cAMP as well as 2'-deoxy-cAMP and N6-monobutyryl-cAMP were capable of restoring the normal level of gp80 expression in synag 7 cells. These results, taken together, indicate bimodal regulation of gp80 expression during development and the involvement of a novel cAMP receptor in the transmembrane signalling pathway that regulates gp80 gene expression.


Sign in / Sign up

Export Citation Format

Share Document