scholarly journals CCR4-Associated Factor 1 Coordinates the Expression of Plasmodium falciparum Egress and Invasion Proteins

2011 ◽  
Vol 10 (9) ◽  
pp. 1257-1263 ◽  
Author(s):  
Bharath Balu ◽  
Steven P. Maher ◽  
Alena Pance ◽  
Chitra Chauhan ◽  
Anatoli V. Naumov ◽  
...  

ABSTRACT Coordinated regulation of gene expression is a hallmark of the Plasmodium falciparum asexual blood-stage development cycle. We report that carbon catabolite repressor protein 4 (CCR4)-associated factor 1 (CAF1) is critical in regulating more than 1,000 genes during malaria parasites' intraerythrocytic stages, especially egress and invasion proteins. CAF1 knockout results in mistimed expression, aberrant accumulation and localization of proteins involved in parasite egress, and invasion of new host cells, leading to premature release of predominantly half-finished merozoites, drastically reducing the intraerythrocytic growth rate of the parasite. This study demonstrates that CAF1 of the CCR4-Not complex is a significant gene regulatory mechanism needed for Plasmodium development within the human host.

mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Jordi Chi ◽  
Marta Cova ◽  
Matilde de las Rivas ◽  
Ana Medina ◽  
Rafael Junqueira Borges ◽  
...  

ABSTRACT UDP-N-acetylglucosamine (UDP-GlcNAc), the main product of the hexosamine biosynthetic pathway, is an important metabolite in protozoan parasites since its sugar moiety is incorporated into glycosylphosphatidylinositol (GPI) glycolipids and N- and O-linked glycans. Apicomplexan parasites have a hexosamine pathway comparable to other eukaryotic organisms, with the exception of the glucosamine-phosphate N-acetyltransferase (GNA1) enzymatic step that has an independent evolutionary origin and significant differences from nonapicomplexan GNA1s. By using conditional genetic engineering, we demonstrate the requirement of GNA1 for the generation of a pool of UDP-GlcNAc and for the development of intraerythrocytic asexual Plasmodium falciparum parasites. Furthermore, we present the 1.95 Å resolution structure of the GNA1 ortholog from Cryptosporidium parvum, an apicomplexan parasite which is a leading cause of diarrhea in developing countries, as a surrogate for P. falciparum GNA1. The in-depth analysis of the crystal shows the presence of specific residues relevant for GNA1 enzymatic activity that are further investigated by the creation of site-specific mutants. The experiments reveal distinct features in apicomplexan GNA1 enzymes that could be exploitable for the generation of selective inhibitors against these parasites, by targeting the hexosamine pathway. This work underscores the potential of apicomplexan GNA1 as a drug target against malaria. IMPORTANCE Apicomplexan parasites cause a major burden on global health and economy. The absence of treatments, the emergence of resistances against available therapies, and the parasite’s ability to manipulate host cells and evade immune systems highlight the urgent need to characterize new drug targets to treat infections caused by these parasites. We demonstrate that glucosamine-6-phosphate N-acetyltransferase (GNA1), required for the biosynthesis of UDP-N-acetylglucosamine (UDP-GlcNAc), is essential for P. falciparum asexual blood stage development and that the disruption of the gene encoding this enzyme quickly causes the death of the parasite within a life cycle. The high-resolution crystal structure of the GNA1 ortholog from the apicomplexan parasite C. parvum, used here as a surrogate, highlights significant differences from human GNA1. These divergences can be exploited for the design of specific inhibitors against the malaria parasite.


2020 ◽  
Author(s):  
Aditya S. Paul ◽  
Alexandra Miliu ◽  
Joao A. Paulo ◽  
Jonathan M. Goldberg ◽  
Arianna M. Bonilla ◽  
...  

AbstractAsexual proliferation of the Plasmodium parasites that cause malaria follow a developmental program that alternates non-canonical intraerythrocytic replication with dissemination to new host cells. We carried out a functional analysis of the Plasmodium falciparum homolog of Protein Phosphatase 1 (PfPP1), a universally conserved cell cycle factor in eukaryotes, to investigate regulation of parasite proliferation. PfPP1 is indeed required for efficient replication, but is absolutely essential for egress of parasites from host red blood cells. A phosphoproteomic screen and chemical-genetic analysis provided evidence for a HECT E3 protein-ubiquitin ligase, as well as a fusion protein with guanylyl cyclase and phospholipid transporter domains, as functional targets of PfPP1. Extracellular phosphatidylcholine stimulates PfPP1-dependent egress. Parasite PfPP1 acts as a master regulator that can integrate multiple cell-intrinsic pathways with external signals to direct parasite egress from host cells.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Abigail J. Perrin ◽  
Claudine Bisson ◽  
Peter A. Faull ◽  
Matthew J. Renshaw ◽  
Rebecca A. Lees ◽  
...  

ABSTRACT Malaria parasites cause disease through repeated cycles of intraerythrocytic proliferation. Within each cycle, several rounds of DNA replication produce multinucleated forms, called schizonts, that undergo segmentation to form daughter merozoites. Upon rupture of the infected cell, the merozoites egress to invade new erythrocytes and repeat the cycle. In human malarial infections, an antibody response specific for the Plasmodium falciparum protein PF3D7_1021800 was previously associated with protection against malaria, leading to an interest in PF3D7_1021800 as a candidate vaccine antigen. Antibodies to the protein were reported to inhibit egress, resulting in it being named schizont egress antigen-1 (SEA1). A separate study found that SEA1 undergoes phosphorylation in a manner dependent upon the parasite cGMP-dependent protein kinase PKG, which triggers egress. While these findings imply a role for SEA1 in merozoite egress, this protein has also been implicated in kinetochore function during schizont development. Therefore, the function of SEA1 remains unclear. Here, we show that P. falciparum SEA1 localizes in proximity to centromeres within dividing nuclei and that conditional disruption of SEA1 expression severely impacts the distribution of DNA and formation of merozoites during schizont development, with a proportion of SEA1-null merozoites completely lacking nuclei. SEA1-null schizonts rupture, albeit with low efficiency, suggesting that neither SEA1 function nor normal segmentation is a prerequisite for egress. We conclude that SEA1 does not play a direct mechanistic role in egress but instead acts upstream of egress as an essential regulator required to ensure the correct packaging of nuclei within merozoites. IMPORTANCE Malaria is a deadly infectious disease. Rationally designed novel therapeutics will be essential for its control and eradication. The Plasmodium falciparum protein PF3D7_1021800, annotated as SEA1, is under investigation as a prospective component of a malaria vaccine, based on previous indications that antibodies to SEA1 interfere with parasite egress from infected erythrocytes. However, a consensus on the function of SEA1 is lacking. Here, we demonstrate that SEA1 localizes to dividing parasite nuclei and is necessary for the correct segregation of replicated DNA into individual daughter merozoites. In the absence of SEA1, merozoites develop defectively, often completely lacking a nucleus, and, consequently, egress is impaired and/or aberrant. Our findings provide insights into the divergent mechanisms by which intraerythrocytic malaria parasites develop and divide. Our conclusions regarding the localization and function of SEA1 are not consistent with the hypothesis that antibodies against it confer protective immunity to malaria by blocking merozoite egress.


2011 ◽  
Vol 79 (12) ◽  
pp. 4957-4964 ◽  
Author(s):  
André Lin Ouédraogo ◽  
Will Roeffen ◽  
Adrian J. F. Luty ◽  
Sake J. de Vlas ◽  
Issa Nebie ◽  
...  

ABSTRACTAcquisition of immunity toPlasmodium falciparumsexual stages is a key determinant for reducing human-mosquito transmission by preventing the fertilization and the development of the parasite in the mosquito midgut. Naturally acquired immunity against sexual stages may therefore form the basis for the development of transmission-blocking vaccines, but studies conducted to date offer little in the way of consistent findings. Here, we describe the acquisition of antigametocyte immune responses in malaria-exposed individuals in Burkina Faso. A total of 719 blood samples were collected in a series of three cross-sectional surveys at the start, peak, and end of the wet season. The seroprevalence of antibodies with specificity for the sexual stage antigens Pfs48/45 and Pfs230 was 2-fold lower (22 to 28%) than that for an asexual blood stage antigen glutamate-rich protein (GLURP) (65%) or for the preerythrocytic stage antigen circumsporozoite protein (CSP) (54%). The youngest children responded at frequencies similar to those for all four antigens but, in contrast with the immune responses to GLURP and CSP that increased with age independently of season and area of residence, there was no evidence for a clear age dependence of responses to Pfs48/45 and Pfs230. Anti-Pfs230 antibodies were most prevalent at the peak of the wet season (P< 0.001). Our findings suggest that naturally acquired immunity against Pfs48/45 and Pfs230 is a function of recent exposure rather than of cumulative exposure to gametocytes.


2013 ◽  
Vol 57 (12) ◽  
pp. 6050-6062 ◽  
Author(s):  
Leonardo Lucantoni ◽  
Sandra Duffy ◽  
Sophie H. Adjalley ◽  
David A. Fidock ◽  
Vicky M. Avery

ABSTRACTThe design of new antimalarial combinations to treatPlasmodium falciparuminfections requires drugs that, in addition to resolving disease symptoms caused by asexual blood stage parasites, can also interrupt transmission to the mosquito vector. Gametocytes, which are essential for transmission, develop as sexual blood stage parasites in the human host over 8 to 12 days and are the most accessible developmental stage for transmission-blocking drugs. Considerable effort is currently being devoted to identifying compounds active against mature gametocytes. However, investigations on the drug sensitivity of developing gametocytes, as well as screening methods for identifying inhibitors of early gametocytogenesis, remain scarce. We have developed a luciferase-based high-throughput screening (HTS) assay using tightly synchronous stage I to III gametocytes from a recombinantP. falciparumline expressing green fluorescent protein (GFP)-luciferase. The assay has been used to evaluate the early-stage gametocytocidal activity of the MMV Malaria Box, a collection of 400 compounds with known antimalarial (asexual blood stage) activity. Screening this collection against early-stage (I to III) gametocytes yielded 64 gametocytocidal compounds with 50% inhibitory concentrations (IC50s) below 2.5 μM. This assay is reproducible and suitable for the screening of large compound libraries, with an average percent coefficient of variance (%CV) of ≤5%, an average signal-to-noise ratio (S:N) of >30, and a Z′ of ∼0.8. Our findings highlight the need for screening efforts directed specifically against early gametocytogenesis and indicate the importance of experimental verification of early-stage gametocytocidal activity in the development of new antimalarial candidates for combination therapy.


2017 ◽  
Vol 85 (8) ◽  
Author(s):  
Hai-Hua Ruan ◽  
Zhen Zhang ◽  
Su-Ying Wang ◽  
Logan M. Nickels ◽  
Li Tian ◽  
...  

ABSTRACT Salmonella enterica serovar Typhimurium can inject effector proteins into host cells via type III secretion systems (T3SSs). These effector proteins modulate a variety of host transcriptional responses to facilitate bacterial growth and survival. Here we show that infection of host cells with S. Typhimurium specifically induces the ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6). This TRAF6 ubiquitination is triggered by the Salmonella pathogenicity island 1 (SPI-1) T3SS effectors SopB and SopE2. We also demonstrate that TRAF6 is involved in the SopB/SopE2-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3), a signaling event conducive to the intracellular growth of S. Typhimurium. Specifically, TRAF6 mediates lysine-63 ubiquitination within the Src homology 2 (SH2) domain of STAT3, which is an essential step for STAT3 membrane recruitment and subsequent phosphorylation in response to S. Typhimurium infection. TRAF6 ubiquitination participates in STAT3 phosphorylation rather than serving as only a hallmark of E3 ubiquitin ligase activation. Our results reveal a novel strategy in which S. Typhimurium T3SS effectors broaden their functions through the activation of host proteins in a ubiquitination-dependent manner to manipulate host cells into becoming a Salmonella-friendly zone.


2020 ◽  
Vol 64 (7) ◽  
Author(s):  
Leen N. Vanheer ◽  
Hao Zhang ◽  
Gang Lin ◽  
Björn F. C. Kafsack

ABSTRACT Earlier genetic and inhibitor studies showed that epigenetic regulation of gene expression is critical for malaria parasite survival in multiple life stages and a promising target for new antimalarials. We therefore evaluated the activity of 350 diverse epigenetic inhibitors against multiple stages of Plasmodium falciparum. We observed ≥90% inhibition at 10 μM for 28% of compounds against asexual blood stages and early gametocytes, of which a third retained ≥90% inhibition at 1 μM.


2010 ◽  
Vol 9 (7) ◽  
pp. 1064-1074 ◽  
Author(s):  
Madhusudan Kadekoppala ◽  
Solabomi A. Ogun ◽  
Steven Howell ◽  
Ruwani S. Gunaratne ◽  
Anthony A. Holder

ABSTRACT Proteins located on Plasmodium falciparum merozoites, the invasive form of the parasite's asexual blood stage, are of considerable interest in vaccine research. Merozoite surface protein 7 (MSP7) forms a complex with MSP1 and is encoded by a member of a multigene family located on chromosome 13. The family codes for MSP7 and five MSP7-related proteins (MSRPs). In the present study, we have investigated the expression and the effect of msrp gene deletion at the asexual blood stage. In addition to msp7, msrp2, msrp3, and msrp5 are transcribed, and mRNA was easily detected by hybridization analysis, whereas mRNA for msrp1 and msrp4 could be detected only by reverse transcription (RT)-PCR. Notwithstanding evidence of transcription, antibodies to recombinant MSRPs failed to detect specific proteins, except for antibodies to MSRP2. Sequential proteolytic cleavages of MSRP2 resulted in 28- and 25-kDa forms. However, MSRP2 was absent from merozoites; the 25-kDa MSRP2 protein (MSRP225) was soluble and secreted upon merozoite egress. The msrp genes were deleted by targeted disruption in the 3D7 line, leading to ablation of full-length transcripts. MSRP deletion mutants had no detectable phenotype, with growth and invasion characteristics comparable to those of the parental parasite; only the deletion of MSP7 led to a detectable growth phenotype. Thus, within this family some of the genes are transcribed at a significant level in asexual blood stages, but the corresponding proteins may or may not be detectable. Interactions of the expressed proteins with the merozoite also differ. These results highlight the potential for unexpected differences of protein expression levels within gene families.


2010 ◽  
Vol 9 (6) ◽  
pp. 952-959 ◽  
Author(s):  
Jean Halbert ◽  
Lawrence Ayong ◽  
Leila Equinet ◽  
Karine Le Roch ◽  
Mary Hardy ◽  
...  

ABSTRACT Cyclin-dependent protein kinases (CDKs) are key regulators of the eukaryotic cell cycle and of the eukaryotic transcription machinery. Here we report the characterization of Pfcrk-3 (Plasmodium falciparum CDK-related kinase 3; PlasmoDB identifier PFD0740w), an unusually large CDK-related protein whose kinase domain displays maximal homology to those CDKs which, in other eukaryotes, are involved in the control of transcription. The closest enzyme in Saccharomyces cerevisiae is BUR1 (bypass upstream activating sequence requirement 1), known to control gene expression through interaction with chromatin modification enzymes. Consistent with this, immunofluorescence data show that Pfcrk-3 colocalizes with histones. We show that recombinant Pfcrk-3 associates with histone H1 kinase activity in parasite extracts and that this association is detectable even if the catalytic domain of Pfcrk-3 is rendered inactive by site-directed mutagenesis, indicating that Pfcrk-3 is part of a complex that includes other protein kinases. Immunoprecipitates obtained from extracts of transgenic parasites expressing hemagglutinin (HA)-tagged Pfcrk-3 by using an anti-HA antibody displayed both protein kinase and histone deacetylase activities. Reverse genetics data show that the pfcrk-3 locus can be targeted only if the genetic modification does not cause a loss of function. Taken together, our data strongly suggest that Pfcrk-3 fulfils a crucial role in the intraerythrocytic development of P. falciparum, presumably through chromatin modification-dependent regulation of gene expression.


mSphere ◽  
2021 ◽  
Author(s):  
My-Hang Huynh ◽  
Marijo S. Roiko ◽  
Angelica O. Gomes ◽  
Ellyn N. Schinke ◽  
Aric J. Schultz ◽  
...  

After replicating within infected host cells, the single-celled parasite Toxoplasma gondii must rupture out of such cells in a process termed egress. Although it is known that T. gondii egress is an active event that involves disruption of host-derived membranes surrounding the parasite, very few proteins that are released by the parasite are known to facilitate egress.


Sign in / Sign up

Export Citation Format

Share Document