scholarly journals Co-option of Plasmodium falciparum PP1 for egress from host erythrocytes

2020 ◽  
Author(s):  
Aditya S. Paul ◽  
Alexandra Miliu ◽  
Joao A. Paulo ◽  
Jonathan M. Goldberg ◽  
Arianna M. Bonilla ◽  
...  

AbstractAsexual proliferation of the Plasmodium parasites that cause malaria follow a developmental program that alternates non-canonical intraerythrocytic replication with dissemination to new host cells. We carried out a functional analysis of the Plasmodium falciparum homolog of Protein Phosphatase 1 (PfPP1), a universally conserved cell cycle factor in eukaryotes, to investigate regulation of parasite proliferation. PfPP1 is indeed required for efficient replication, but is absolutely essential for egress of parasites from host red blood cells. A phosphoproteomic screen and chemical-genetic analysis provided evidence for a HECT E3 protein-ubiquitin ligase, as well as a fusion protein with guanylyl cyclase and phospholipid transporter domains, as functional targets of PfPP1. Extracellular phosphatidylcholine stimulates PfPP1-dependent egress. Parasite PfPP1 acts as a master regulator that can integrate multiple cell-intrinsic pathways with external signals to direct parasite egress from host cells.

2011 ◽  
Vol 10 (9) ◽  
pp. 1257-1263 ◽  
Author(s):  
Bharath Balu ◽  
Steven P. Maher ◽  
Alena Pance ◽  
Chitra Chauhan ◽  
Anatoli V. Naumov ◽  
...  

ABSTRACT Coordinated regulation of gene expression is a hallmark of the Plasmodium falciparum asexual blood-stage development cycle. We report that carbon catabolite repressor protein 4 (CCR4)-associated factor 1 (CAF1) is critical in regulating more than 1,000 genes during malaria parasites' intraerythrocytic stages, especially egress and invasion proteins. CAF1 knockout results in mistimed expression, aberrant accumulation and localization of proteins involved in parasite egress, and invasion of new host cells, leading to premature release of predominantly half-finished merozoites, drastically reducing the intraerythrocytic growth rate of the parasite. This study demonstrates that CAF1 of the CCR4-Not complex is a significant gene regulatory mechanism needed for Plasmodium development within the human host.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Abigail J. Perrin ◽  
Claudine Bisson ◽  
Peter A. Faull ◽  
Matthew J. Renshaw ◽  
Rebecca A. Lees ◽  
...  

ABSTRACT Malaria parasites cause disease through repeated cycles of intraerythrocytic proliferation. Within each cycle, several rounds of DNA replication produce multinucleated forms, called schizonts, that undergo segmentation to form daughter merozoites. Upon rupture of the infected cell, the merozoites egress to invade new erythrocytes and repeat the cycle. In human malarial infections, an antibody response specific for the Plasmodium falciparum protein PF3D7_1021800 was previously associated with protection against malaria, leading to an interest in PF3D7_1021800 as a candidate vaccine antigen. Antibodies to the protein were reported to inhibit egress, resulting in it being named schizont egress antigen-1 (SEA1). A separate study found that SEA1 undergoes phosphorylation in a manner dependent upon the parasite cGMP-dependent protein kinase PKG, which triggers egress. While these findings imply a role for SEA1 in merozoite egress, this protein has also been implicated in kinetochore function during schizont development. Therefore, the function of SEA1 remains unclear. Here, we show that P. falciparum SEA1 localizes in proximity to centromeres within dividing nuclei and that conditional disruption of SEA1 expression severely impacts the distribution of DNA and formation of merozoites during schizont development, with a proportion of SEA1-null merozoites completely lacking nuclei. SEA1-null schizonts rupture, albeit with low efficiency, suggesting that neither SEA1 function nor normal segmentation is a prerequisite for egress. We conclude that SEA1 does not play a direct mechanistic role in egress but instead acts upstream of egress as an essential regulator required to ensure the correct packaging of nuclei within merozoites. IMPORTANCE Malaria is a deadly infectious disease. Rationally designed novel therapeutics will be essential for its control and eradication. The Plasmodium falciparum protein PF3D7_1021800, annotated as SEA1, is under investigation as a prospective component of a malaria vaccine, based on previous indications that antibodies to SEA1 interfere with parasite egress from infected erythrocytes. However, a consensus on the function of SEA1 is lacking. Here, we demonstrate that SEA1 localizes to dividing parasite nuclei and is necessary for the correct segregation of replicated DNA into individual daughter merozoites. In the absence of SEA1, merozoites develop defectively, often completely lacking a nucleus, and, consequently, egress is impaired and/or aberrant. Our findings provide insights into the divergent mechanisms by which intraerythrocytic malaria parasites develop and divide. Our conclusions regarding the localization and function of SEA1 are not consistent with the hypothesis that antibodies against it confer protective immunity to malaria by blocking merozoite egress.


2020 ◽  
Vol 16 (12) ◽  
pp. e1009055
Author(s):  
Zichong Li ◽  
Cyrus Hajian ◽  
Warner C. Greene

To counter HIV latency, it is important to develop a better understanding of the full range of host factors promoting latency. Their identification could suggest new strategies to reactivate latent proviruses and subsequently kill the host cells (“shock and kill”), or to permanently silence these latent proviruses (“block and lock”). We recently developed a screening strategy termed “Reiterative Enrichment and Authentication of CRISPRi Targets” (REACT) that can unambiguously identify host genes promoting HIV latency, even in the presence of high background “noise” produced by the stochastic nature of HIV reactivation. After applying this strategy in four cell lines displaying different levels of HIV inducibility, we identified FTSJ3, TMEM178A, NICN1 and the Integrator Complex as host genes promoting HIV latency. shRNA knockdown of these four repressive factors significantly enhances HIV expression in primary CD4 T cells, and active HIV infection is preferentially found in cells expressing lower levels of these four factors. Mechanistically, we found that downregulation of these newly identified host inhibitors stimulates different stages of RNA Polymerase II-mediated transcription of HIV-1. The identification and validation of these new host inhibitors provide insight into the novel mechanisms that maintain HIV latency even when cells are activated and undergo cell division.


Viruses ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 466 ◽  
Author(s):  
Francesco Martelli ◽  
Zongsong Wu ◽  
Serena Delbue ◽  
Fabian Weissbach ◽  
Maria Giulioli ◽  
...  

In immunosuppressed patients, BKPyV-variants emerge carrying rearranged non-coding control-regions (rr-NCCRs) that increase early viral gene region (EVGR) expression and replication capacity. BKPyV also encodes microRNAs, which have been reported to downregulate EVGR-encoded large T-antigen transcripts, to decrease viral replication in infected cells and to be secreted in exosomes. To investigate the interplay of NCCR and microRNAs, we compared archetype- and rr-NCCR-BKPyV infection in cell culture. We found that laboratory and clinical rr-NCCR-BKPyV-strains show higher replication rates but significantly lower microRNA levels than archetype virus intracellularly and in exosomes. To investigate whether rr-NCCR or increased EVGR activity modulated microRNA levels, we examined the (sp1-4)NCCR-BKPyV, which has an archetype NCCR-architecture but shows increased EVGR expression due to point mutations inactivating one Sp1 binding site. We found that microRNA levels following (sp1-4)NCCR-BKPyV infection were as low as in rr-NCCR-variants. Thus, NCCR rearrangements are not required for lower miRNA levels. Accordingly, Sp1 siRNA knock-down decreased microRNA levels in archetype BKPyV infection but had no effect on (sp1-4)- or rr-NCCR-BKPyV. However, rr-NCCR-BKPyV replication was downregulated by exosome preparations carrying BKPyV-microRNA prior to infection. To explore the potential relevance in humans, urine samples from 12 natalizumab-treated multiple sclerosis patients were analysed. In 7 patients, rr-NCCR-BKPyV were detected showing high urine BKPyV loads but low microRNAs levels, whereas the opposite was seen in 5 patients with archetype BKPyV. We discuss the results in a dynamic model of BKPyV replication according to NCCR activity and exosome regulation, which integrates immune selection pressure, spread to new host cells and rr-NCCR emergence.


Blood ◽  
1986 ◽  
Vol 67 (3) ◽  
pp. 827-830 ◽  
Author(s):  
EF Jr Roth ◽  
S Schulman ◽  
J Vanderberg ◽  
J Olson

Abstract Plasmodium falciparum-infected human red cells possess at least two pathways for the generation of reduced nicotinamide adenine dinucleotide phosphate (NADPH): (1) the glucose-6-phosphate dehydrogenase (G6PD) pathway and (2) the glutamate dehydrogenase (GD) pathway using glutamate as a substrate. Uninfected erythrocytes lack the GD pathway. The NADPH generated can be used to reduce oxidized glutathione (GSSG), which accumulates in the presence of an oxidative stress. In red cell G6PD deficiency, this pathway is reduced or absent, and the host cells as well as the parasites within them are vulnerable to oxidant stress. In view of the presence of the GD pathway in parasitized red cells and the recent description of a parasite-derived G6PD enzyme, we have asked whether the pathways for the reduction of GSSG provided by the parasite can substitute for the host G6PD in red cells deficient in G6PD activity. We have devised a functional assay in which the reduction rate of GSSG is monitored in the presence of buffered infected or control red cell lysates and substrates. Infected G6PD-deficient erythrocytes were obtained from in vitro cultures after a single prior growth cycle of the parasites in G6PD deficient cells to eliminate contaminating normal red cells. The results show that only parasitized red cells can reduce GSSG via the GD pathway. In parasitized G6PD Mediterranean red cells (completely G6PD-deficient), there is a detectable GSSG reduction via the G6PD pathway, not found in uninfected lysates from the same individual. In G6PD A- (African type, featuring partial deficiency), a small increment in the G6PD-dependent reduction of GSSG can also be detected. However, when compared to G6PD normal red cells, the activities from the parasite-derived pathways are small and could not be considered substitutes for normal host enzyme activity. It is concluded that while the plasmodium provides additional pathways for the generation of NADPH that may serve its own metabolic needs, the host red cells and hence the parasite itself remain vulnerable to oxidant stress.


2019 ◽  
Vol 47 (17) ◽  
pp. 9296-9312 ◽  
Author(s):  
Catherine Kendall ◽  
Henna Khalid ◽  
Marietta Müller ◽  
Dominic H Banda ◽  
Alain Kohl ◽  
...  

Abstract Chikungunya virus (CHIKV) is a re-emerging, pathogenic Alphavirus transmitted to humans by Aedes spp. mosquitoes. We have mapped the RNA structure of the 5′ region of the CHIKV genome using selective 2′-hydroxyl acylation analysed by primer extension (SHAPE) to investigate intramolecular base-pairing at single-nucleotide resolution. Taking a structure-led reverse genetic approach, in both infectious virus and sub-genomic replicon systems, we identified six RNA replication elements essential to efficient CHIKV genome replication - including novel elements, either not previously analysed in other alphaviruses or specific to CHIKV. Importantly, through a reverse genetic approach we demonstrate that the replication elements function within the positive-strand genomic copy of the virus genome, in predominantly structure-dependent mechanisms during efficient replication of the CHIKV genome. Comparative analysis in human and mosquito-derived cell lines reveal that a novel element within the 5′UTR is essential for efficient replication in both host systems, while those in the adjacent nsP1 encoding region are specific to either vertebrate or invertebrate host cells. In addition to furthering our knowledge of fundamental aspects of the molecular virology of this important human pathogen, we foresee that results from this study will be important for rational design of a genetically stable attenuated vaccine.


Author(s):  
Zachary K Barth ◽  
Tania V Silvas ◽  
Angus Angermeyer ◽  
Kimberley D Seed

Abstract Phage-inducible chromosomal island-like elements (PLEs) are bacteriophage satellites found in Vibrio cholerae. PLEs parasitize the lytic phage ICP1, excising from the bacterial chromosome, replicating, and mobilizing to new host cells following cell lysis. PLEs protect their host cell populations by completely restricting the production of ICP1 progeny. Previously, it was found that ICP1 replication was reduced during PLE(+) infection. Despite robust replication of the PLE genome, relatively few transducing units are produced. We investigated if PLE DNA replication itself is antagonistic to ICP1 replication. Here we identify key constituents of PLE replication and assess their role in interference of ICP1. PLE encodes a RepA_N initiation factor that is sufficient to drive replication from the PLE origin of replication during ICP1 infection. In contrast to previously characterized bacteriophage satellites, expression of the PLE initiation factor was not sufficient for PLE replication in the absence of phage. Replication of PLE was necessary for interference of ICP1 DNA replication, but replication of a minimalized PLE replicon was not sufficient for ICP1 DNA replication interference. Despite restoration of ICP1 DNA replication, non-replicating PLE remained broadly inhibitory against ICP1. These results suggest that PLE DNA replication is one of multiple mechanisms contributing to ICP1 restriction.


2010 ◽  
Vol 110 (4) ◽  
pp. 882-892 ◽  
Author(s):  
Ana Zuleima Obando-Martinez ◽  
Hernando Curtidor ◽  
Magnolia Vanegas ◽  
Gabriela Arévalo-Pinzón ◽  
Manuel Alfonso Patarroyo ◽  
...  

2003 ◽  
Vol 162 (2) ◽  
pp. 317-327 ◽  
Author(s):  
Tim-Wolf Gilberger ◽  
Jennifer K. Thompson ◽  
Michael B. Reed ◽  
Robert T. Good ◽  
Alan F. Cowman

The invasion of host cells by the malaria parasite Plasmodium falciparum requires specific protein–protein interactions between parasite and host receptors and an intracellular translocation machinery to power the process. The transmembrane erythrocyte binding protein-175 (EBA-175) and thrombospondin-related anonymous protein (TRAP) play central roles in this process. EBA-175 binds to glycophorin A on human erythrocytes during the invasion process, linking the parasite to the surface of the host cell. In this report, we show that the cytoplasmic domain of EBA-175 encodes crucial information for its role in merozoite invasion, and that trafficking of this protein is independent of this domain. Further, we show that the cytoplasmic domain of TRAP, a protein that is not expressed in merozoites but is essential for invasion of liver cells by the sporozoite stage, can substitute for the cytoplasmic domain of EBA-175. These results show that the parasite uses the same components of its cellular machinery for invasion regardless of the host cell type and invasive form.


Sign in / Sign up

Export Citation Format

Share Document