scholarly journals Sla1, a Schizosaccharomyces pombe Homolog of the Human La Protein, Induces Ectopic Meiosis when Its C Terminus Is Truncated

2003 ◽  
Vol 2 (6) ◽  
pp. 1274-1287 ◽  
Author(s):  
Kaori Tanabe ◽  
Noriko Ito ◽  
Tomomi Wakuri ◽  
Fumiyo Ozoe ◽  
Makoto Umeda ◽  
...  

ABSTRACT Sla1 is a Schizosaccharomyces pombe homolog of the human La protein. La proteins are known to be RNA-binding proteins that bear conserved RNA recognition motifs (La and RRMs), but their biological functions still have not been fully resolved. In this study, we show that the S. pombe La homolog (Sla1) is involved in regulating sexual development. Sla1 truncated in the C terminus (Sla1ΔC) induced ectopic sporulation in the ras1Δ strain and several other sporulation-deficient mutants. The C terminus contains a nuclear localization signal. While full-length Sla1 localizes in the nucleus, Sla1ΔC is found throughout the cell, suggesting the cytoplasmic localization of Sla1ΔC is involved in its sporulation-inducing activity. Further deletion analysis of Sla1 indicated that a small region (35 amino acids) that includes a portion of RRM2 is sufficient to induce sporulation. The La motif (RRM1) is not involved in this activity. Strikingly, Sla1ΔC induced haploid meiosis in a heterothallic strain, similar to the pat1-114 or mei2-SATA mutation. Sla1ΔC induced sporulation in a mei3 disruptant but not in a mei2 disruptant, indicating that Sla1ΔC requires Mei2 to induce haploid meiosis. Deletion of the chromosomal sla1 gene lowered the temperature sensitivity of the pat1-114 mutant. Two-hybrid analysis indicated that Pat1 interacts with Sla1ΔC but not full-length Sla1. Thus, Sla1ΔC may block Pat1 activity. This block would remove the inhibition on Mei2, which would then drive the cell into haploid meiosis. Finally, Sla1 was degraded prior to the start of meiosis when we monitored Sla1 in cells in which meiosis was synchronously induced. The ability of truncated Sla1 to induce ectopic meiosis represents a very novel function that has hitherto not been suspected for the La family of proteins.

1999 ◽  
Vol 112 (24) ◽  
pp. 4501-4512 ◽  
Author(s):  
Y.M. Yannoni ◽  
K. White

The neuron specific Drosophila ELAV protein belongs to the ELAV family of RNA binding proteins which are characterized by three highly conserved RNA recognition motifs, an N-terminal domain, and a hinge region between the second and third RNA recognition motifs. Despite their highly conserved RNA recognition motifs the ELAV family members are a group of proteins with diverse posttranscriptional functions including splicing regulation, mRNA stability and translatability and have a variety of subcellular localizations. The role of the ELAV hinge in localization and function was examined using transgenes encoding ELAV hinge deletions, in vivo. Subcellular localization of the hinge mutant proteins revealed that residues between amino acids 333–374 are necessary for nuclear localization. This delineated sequence has no significant homology to classical nuclear localization sequences, but it is similar to the recently characterized nucleocytoplasmic shuttling sequence, the HNS, from a human ELAV family member, HuR. This defined sequence, however, was insufficient for nuclear localization as tested using hinge-GFP fusion proteins. Functional assays revealed that mutant proteins that fail to localize to the nucleus are unable to provide ELAV vital function, but their function is significantly restored when translocated into the nucleus by a heterologous nuclear localization sequence tag.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sashank Agrawal ◽  
Pan-Hsien Kuo ◽  
Lee-Ya Chu ◽  
Bagher Golzarroshan ◽  
Monika Jain ◽  
...  

RNA Biology ◽  
2010 ◽  
Vol 7 (3) ◽  
pp. 339-344 ◽  
Author(s):  
Alejandro Cassola ◽  
Griselda Noé ◽  
Alberto C. Frasch

2018 ◽  
Author(s):  
Ahmed M. Malik ◽  
Roberto A. Miguez ◽  
Xingli Li ◽  
Ye-Shih Ho ◽  
Eva L. Feldman ◽  
...  

ABSTRACTAbnormalities in nucleic acid processing are associated with the development of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mutations in Matrin 3 (MATR3), a poorly understood DNA- and RNA-binding protein, cause familial ALS/FTD, and MATR3 pathology is a feature of sporadic disease, suggesting that MATR3 dysfunction is integrally linked to ALS pathogenesis. Using a primary neuron model to assess MATR3-mediated toxicity, we noted that neurons were bidirectionally vulnerable to MATR3 levels, with pathogenic MATR3 mutants displaying enhanced toxicity. MATR3’s zinc finger domains partially modulated toxicity, but elimination of its RNA recognition motifs had no effect on neuronal survival, instead facilitating its self-assembly into liquid-like droplets. In contrast to other RNA-binding proteins associated with ALS, cytoplasmic MATR3 redistribution mitigated neurodegeneration, suggesting that nuclear MATR3 mediates toxicity. Our findings offer a foundation for understanding MATR3-related neurodegeneration and how nucleic acid binding functions, localization, and pathogenic mutations drive sporadic and familial disease.


2016 ◽  
Vol 214 (1) ◽  
pp. 45-59 ◽  
Author(s):  
Taro Mannen ◽  
Seisuke Yamashita ◽  
Kozo Tomita ◽  
Naoki Goshima ◽  
Tetsuro Hirose

The mammalian cell nucleus contains membraneless suborganelles referred to as nuclear bodies (NBs). Some NBs are formed with an architectural RNA (arcRNA) as the structural core. Here, we searched for new NBs that are built on unidentified arcRNAs by screening for ribonuclease (RNase)-sensitive NBs using 32,651 fluorescently tagged human cDNA clones. We identified 32 tagged proteins that required RNA for their localization in distinct nuclear foci. Among them, seven RNA-binding proteins commonly localized in the Sam68 nuclear body (SNB), which was disrupted by RNase treatment. Knockdown of each SNB protein revealed that SNBs are composed of two distinct RNase-sensitive substructures. One substructure is present as a distinct NB, termed the DBC1 body, in certain conditions, and the more dynamic substructure including Sam68 joins to form the intact SNB. HNRNPL acts as the adaptor to combine the two substructures and form the intact SNB through the interaction of two sets of RNA recognition motifs with the putative arcRNAs in the respective substructures.


Genome ◽  
2006 ◽  
Vol 49 (3) ◽  
pp. 254-262 ◽  
Author(s):  
Walther Traut ◽  
Teruyuki Niimi ◽  
Kazuho Ikeo ◽  
Ken Sahara

The Sex-lethal (SXL) protein belongs to the family of RNA-binding proteins and is involved in the regulation of pre-mRNA splicing. SXL has undergone an obvious change of function during the evolution of the insect clade. The gene has acquired a pivotal role in the sex-determining pathway of Drosophila, although it does not act as a sex determiner in non-drosophilids. We collected SXL sequences of insect species ranging from the pea aphid (Acyrtho siphom pisum) to Drosophila melanogaster by searching published articles, sequencing cDNAs, and exploiting homology searches in public EST and whole-genome databases. The SXL protein has moderately conserved N- and C-terminal regions and a well-conserved central region including 2 RNA recognition motifs. Our phylogenetic analysis shows that a single orthologue of the Drosophila Sex-lethal (Sxl) gene is present in the genomes of the malaria mosquito Anopheles gambiae, the honeybee Apis mellifera, the silkworm Bombyx mori, and the red flour beetle Tribolium castaneum. The D. melanogaster, D. erecta, and D. pseudoobscura genomes, however, contain 2 paralogous genes, Sxl and CG3056, which are orthologous to the Anopheles, Apis, Bombyx, and Tribolium Sxl. Hence, a duplication in the fly clade generated Sxl and CG3056. Our hypothesis maintains that one of the genes, Sxl, adopted the new function of sex determiner in Drosophila, whereas the other, CG3056, continued to serve some or all of the yet-unknown ancestral functions.Key words: sex determination, Sxl, CG3056, Bombyx, Apis, Anopheles, Aedes, Acyrtosiphon, Megaselia, Lucilia, Musca, Drosophila, Tribolium, Sciarids, Drosophila melanogaster, Drosophila erecta, Drosophila pseudoobscura, gene duplication.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ahmed M Malik ◽  
Roberto A Miguez ◽  
Xingli Li ◽  
Ye-Shih Ho ◽  
Eva L Feldman ◽  
...  

Abnormalities in nucleic acid processing are associated with the development of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mutations in Matrin 3 (MATR3), a poorly understood DNA- and RNA-binding protein, cause familial ALS/FTD, and MATR3 pathology is a feature of sporadic disease, suggesting that MATR3 dysfunction is integrally linked to ALS pathogenesis. Using a rat primary neuron model to assess MATR3-mediated toxicity, we noted that neurons were bidirectionally vulnerable to MATR3 levels, with pathogenic MATR3 mutants displaying enhanced toxicity. MATR3’s zinc finger domains partially modulated toxicity, but elimination of its RNA recognition motifs had no effect on survival, instead facilitating its self-assembly into liquid-like droplets. In contrast to other RNA-binding proteins associated with ALS, cytoplasmic MATR3 redistribution mitigated neurodegeneration, suggesting that nuclear MATR3 mediates toxicity. Our findings offer a foundation for understanding MATR3-related neurodegeneration and how nucleic acid binding functions, localization, and pathogenic mutations drive sporadic and familial disease.


2008 ◽  
Vol 36 (3) ◽  
pp. 520-521 ◽  
Author(s):  
Christine Clayton ◽  
Angela Schwede ◽  
Mhairi Stewart ◽  
Ana Robles ◽  
Corinna Benz ◽  
...  

Control of gene expression in trypanosomes relies almost exclusively on post-transcriptional mechanisms. Trypanosomes have the normal enzymes for mRNA decay: both the exosome and a 5′–3′-exoribonuclease are important in the degradation of very unstable transcripts, whereas the CAF1/NOT complex plays a major role in the degradation of all mRNAs tested. Targeted RNA interference screening was used to identify RNA-binding proteins that regulate mRNA degradation, and it revealed roles for proteins with RNA recognition motifs or pumilio domains.


Sign in / Sign up

Export Citation Format

Share Document