scholarly journals Genome Sequence of Staphylococcus aureus Ex1, Isolated from a Patient with Spinal Osteomyelitis

2018 ◽  
Vol 6 (26) ◽  
Author(s):  
Helen Morcrette ◽  
Marina S. Morgan ◽  
Audrey Farbos ◽  
Paul O’Neill ◽  
Karen Moore ◽  
...  

Here, we present the genome sequence of Staphylococcus aureus Ex1, isolated in 2015 from a patient with spinal osteomyelitis at the Royal Devon and Exeter Hospital in the United Kingdom. The availability of the Ex1 genome sequence provides a resource for studying the basis for spinal infection and horizontal gene transfer in S. aureus.

2012 ◽  
Vol 194 (23) ◽  
pp. 6642-6643 ◽  
Author(s):  
Isabel Brunet-Galmés ◽  
Antonio Busquets ◽  
Arantxa Peña ◽  
Margarita Gomila ◽  
Balbina Nogales ◽  
...  

ABSTRACTPseudomonas stutzeriAN10 (CCUG 29243) can be considered a model strain for aerobic naphthalene degradation. We report the complete genome sequence of this bacterium. Its 4.71-Mb chromosome provides insights into other biodegradative capabilities of strain AN10 (i.e., benzoate catabolism) and suggests a high number of horizontal gene transfer events.


mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Volker Winstel ◽  
Patricia Sanchez-Carballo ◽  
Otto Holst ◽  
Guoqing Xia ◽  
Andreas Peschel

ABSTRACT The major clonal lineages of the human pathogen Staphylococcus aureus produce cell wall-anchored anionic poly-ribitol-phosphate (RboP) wall teichoic acids (WTA) substituted with d-Alanine and N-acetyl-d-glucosamine. The phylogenetically isolated S. aureus ST395 lineage has recently been found to produce a unique poly-glycerol-phosphate (GroP) WTA glycosylated with N-acetyl-d-galactosamine (GalNAc). ST395 clones bear putative WTA biosynthesis genes on a novel genetic element probably acquired from coagulase-negative staphylococci (CoNS). We elucidated the ST395 WTA biosynthesis pathway and identified three novel WTA biosynthetic genes, including those encoding an α-O-GalNAc transferase TagN, a nucleotide sugar epimerase TagV probably required for generation of the activated sugar donor substrate for TagN, and an unusually short GroP WTA polymerase TagF. By using a panel of mutants derived from ST395, the GalNAc residues carried by GroP WTA were found to be required for infection by the ST395-specific bacteriophage Φ187 and to play a crucial role in horizontal gene transfer of S. aureus pathogenicity islands (SaPIs). Notably, ectopic expression of ST395 WTA biosynthesis genes rendered normal S. aureus susceptible to Φ187 and enabled Φ187-mediated SaPI transfer from ST395 to regular S. aureus. We provide evidence that exchange of WTA genes and their combination in variable, mosaic-like gene clusters have shaped the evolution of staphylococci and their capacities to undergo horizontal gene transfer events. IMPORTANCE The structural highly diverse wall teichoic acids (WTA) are cell wall-anchored glycopolymers produced by most Gram-positive bacteria. While most of the dominant Staphylococcus aureus lineages produce poly-ribitol-phosphate WTA, the recently described ST395 lineage produces a distinct poly-glycerol-phosphate WTA type resembling the WTA backbone of coagulase-negative staphylococci (CoNS). Here, we analyzed the ST395 WTA biosynthesis pathway and found new types of WTA biosynthesis genes along with an evolutionary link between ST395 and CoNS, from which the ST395 WTA genes probably originate. The elucidation of ST395 WTA biosynthesis will help to understand how Gram-positive bacteria produce highly variable WTA types and elucidate functional consequences of WTA variation.


2018 ◽  
Vol 7 (13) ◽  
Author(s):  
Steven T. Pullan ◽  
Rory W. Miles ◽  
Kuiama Lewandowski ◽  
Richard Vipond

Hybrid de novo assembly of Illumina/Nanopore reads produced a complete closed genome sequence of the chromosome and two virulence plasmids of a Bacillus anthracis isolate from a fatal anthrax case in the United Kingdom linked to imported animal skins/drums; this provides a high-quality representative sequence for this lineage.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Ewan M. Harrison ◽  
Lucy A. Weinert ◽  
Matthew T. G. Holden ◽  
John J. Welch ◽  
Katherine Wilson ◽  
...  

ABSTRACTMethicillin-resistantStaphylococcus aureus(MRSA) is a global human health problem causing infections in both hospitals and the community. Companion animals, such as cats, dogs, and horses, are also frequently colonized by MRSA and can become infected. We sequenced the genomes of 46 multilocus sequence type (ST) 22 MRSA isolates from cats and dogs in the United Kingdom and compared these to an extensive population framework of human isolates from the same lineage. Phylogenomic analyses showed that all companion animal isolates were interspersed throughout the epidemic MRSA-15 (EMRSA-15) pandemic clade and clustered with human isolates from the United Kingdom, with human isolates basal to those from companion animals, suggesting a human source for isolates infecting companion animals. A number of isolates from the same veterinary hospital clustered together, suggesting that as in human hospitals, EMRSA-15 isolates are readily transmitted in the veterinary hospital setting. Genome-wide association analysis did not identify any host-specific single nucleotide polymorphisms (SNPs) or virulence factors. However, isolates from companion animals were significantly less likely to harbor a plasmid encoding erythromycin resistance. When this plasmid was present in animal-associated isolates, it was more likely to contain mutations mediating resistance to clindamycin. This finding is consistent with the low levels of erythromycin and high levels of clindamycin used in veterinary medicine in the United Kingdom. This study furthers the “one health” view of infectious diseases that the pathogen pool of human and animal populations are intrinsically linked and provides evidence that antibiotic usage in animal medicine is shaping the population of a major human pathogen.IMPORTANCEMethicillin-resistantStaphylococcus aureus(MRSA) is major problem in human medicine. Companion animals, such as cats, dogs, and horses, can also become colonized and infected by MRSA. Here, we demonstrate that a shared population of an important and globally disseminated lineage of MRSA can infect both humans and companion animals without undergoing host adaptation. This suggests that companion animals might act as a reservoir for human infections. We also show that the isolates from companion animals have differences in the presence of certain antibiotic resistance genes. This study furthers the “one health” view of infectious diseases by demonstrating that the pool of MRSA isolates in the human and animal populations are shared and highlights how different antibiotic usage patterns between human and veterinary medicine can shape the population of bacterial pathogens.


2019 ◽  
Vol 8 (31) ◽  
Author(s):  
William M. Rooney ◽  
Marta Wojnowska ◽  
Daniel Walker

Here, we report the draft genome sequence of Pectobacterium carotovorum subsp. carotovorum strain LMG 2410, isolated from cucumber in the United Kingdom. The draft genome is 4,773,000 bp, with a G+C content of 51.9%, and carries a total of 4,536 coding sequences.


2019 ◽  
Vol 8 (9) ◽  
Author(s):  
Fabrício S. Campos ◽  
Fernando B. Cerqueira ◽  
Gil R. Santos ◽  
Eliseu J. G. Pereira ◽  
Roberto F. T. Corrêia ◽  
...  

Plasmids play a crucial role in the evolution of bacterial genomes by mediating horizontal gene transfer. In this work, we sequenced two plasmids found in a Brazilian Bacillus thuringiensis serovar israelensis strain which showed 100% nucleotide identities with Bacillus thuringiensis serovar kurstaki plasmids.


mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Peter Jorth ◽  
Marvin Whiteley

ABSTRACTNatural transformation by competent bacteria is a primary means of horizontal gene transfer; however, evidence that competence drives bacterial diversity and evolution has remained elusive. To test this theory, we used a retrospective comparative genomic approach to analyze the evolutionary history ofAggregatibacter actinomycetemcomitans, a bacterial species with both competent and noncompetent sister strains. Through comparative genomic analyses, we reveal that competence is evolutionarily linked to genomic diversity and speciation. Competence loss occurs frequently during evolution and is followed by the loss of clustered regularly interspaced short palindromic repeats (CRISPRs), bacterial adaptive immune systems that protect against parasitic DNA. Relative to noncompetent strains, competent bacteria have larger genomes containing multiple rearrangements. In contrast, noncompetent bacterial genomes are extremely stable but paradoxically susceptible to infective DNA elements, which contribute to noncompetent strain genetic diversity. Moreover, incomplete noncompetent strain CRISPR immune systems are enriched for self-targeting elements, which suggests that the CRISPRs have been co-opted for bacterial gene regulation, similar to eukaryotic microRNAs derived from the antiviral RNA interference pathway.IMPORTANCEThe human microbiome is rich with thousands of diverse bacterial species. One mechanism driving this diversity is horizontal gene transfer by natural transformation, whereby naturally competent bacteria take up environmental DNA and incorporate new genes into their genomes. Competence is theorized to accelerate evolution; however, attempts to test this theory have proved difficult. Through genetic analyses of the human periodontal pathogenAggregatibacter actinomycetemcomitans, we have discovered an evolutionary connection between competence systems promoting gene acquisition and CRISPRs (clustered regularly interspaced short palindromic repeats), adaptive immune systems that protect bacteria against genetic parasites. We show that competentA. actinomycetemcomitansstrains have numerous redundant CRISPR immune systems, while noncompetent bacteria have lost their CRISPR immune systems because of inactivating mutations. Together, the evolutionary data linking the evolution of competence and CRISPRs reveals unique mechanisms promoting genetic heterogeneity and the rise of new bacterial species, providing insight into complex mechanisms underlying bacterial diversity in the human body.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Eva Hong ◽  
Ala-Eddine Deghmane ◽  
Muhamed-Kheir Taha

ABSTRACT We report the detection in France of a beta-lactamase-producing invasive meningococcal isolate. Whole-genome sequencing of the isolate revealed a ROB-1-type beta-lactamase gene that is frequently encountered in Haemophilus influenzae, suggesting horizontal transfer between isolates of these bacterial species. Beta-lactamases are exceptional in meningococci, with no reports for more than 2 decades. This report is worrying, as the expansion of such isolates may jeopardize the effective treatment against invasive meningococcal disease.


Sign in / Sign up

Export Citation Format

Share Document