scholarly journals Complete Genomic Sequence of an Avian Pathogenic Escherichia coli Strain of Serotype O7:HNT

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Renato P. Maluta ◽  
Bryon Nicholson ◽  
Catherine M. Logue ◽  
Lisa K. Nolan ◽  
Thaís C. G. Rojas ◽  
...  

Avian pathogenic Escherichia coli (APEC) is associated with colibacillosis in poultry. Here, we present the first complete sequence of an APEC strain of the O7:HNT serotype and ST73 sequence type, isolated from a broiler with cellulitis. Complete genomes of APEC with distinct genetic backgrounds may be useful for comparative analysis.

2007 ◽  
Vol 189 (8) ◽  
pp. 3228-3236 ◽  
Author(s):  
Timothy J. Johnson ◽  
Subhashinie Kariyawasam ◽  
Yvonne Wannemuehler ◽  
Paul Mangiamele ◽  
Sara J. Johnson ◽  
...  

ABSTRACT Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include human uropathogenic E. coli (UPEC) and avian pathogenic E. coli (APEC). Regardless of host of origin, ExPEC strains share many traits. It has been suggested that these commonalities may enable APEC to cause disease in humans. Here, we begin to test the hypothesis that certain APEC strains possess potential to cause human urinary tract infection through virulence genotyping of 1,000 APEC and UPEC strains, generation of the first complete genomic sequence of an APEC (APEC O1:K1:H7) strain, and comparison of this genome to all available human ExPEC genomic sequences. The genomes of APEC O1 and three human UPEC strains were found to be remarkably similar, with only 4.5% of APEC O1's genome not found in other sequenced ExPEC genomes. Also, use of multilocus sequence typing showed that some of the sequenced human ExPEC strains were more like APEC O1 than other human ExPEC strains. This work provides evidence that at least some human and avian ExPEC strains are highly similar to one another, and it supports the possibility that a food-borne link between some APEC and UPEC strains exists. Future studies are necessary to assess the ability of APEC to overcome the hurdles necessary for such a food-borne transmission, and epidemiological studies are required to confirm that such a phenomenon actually occurs.


2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Bryon A. Nicholson ◽  
Yvonne M. Wannemuehler ◽  
Catherine M. Logue ◽  
Ganwu Li ◽  
Lisa K. Nolan

Avian-pathogenic Escherichia coli (APEC) is the causative agent of colibacillosis, a disease that affects all facets of poultry production worldwide, resulting in multimillion dollar losses annually. Here, we report the genome sequence of an APEC O18 sequence type 95 (ST95) strain associated with disease in a chicken.


2018 ◽  
Vol 7 (12) ◽  
Author(s):  
Daniel W. Nielsen ◽  
Paul Mangiamele ◽  
Nicole Ricker ◽  
Nicolle L. Barbieri ◽  
Heather K. Allen ◽  
...  

Avian pathogenic Escherichia coli (APEC) is the causative agent of colibacillosis, a disease that affects poultry production worldwide and leads to multimillion-dollar losses annually. Here, we report the genome sequence of APEC O2-211, a sequence type 117 (ST117) strain isolated from a diseased chicken.


2006 ◽  
Vol 188 (16) ◽  
pp. 5975-5983 ◽  
Author(s):  
Timothy J. Johnson ◽  
Sara J. Johnson ◽  
Lisa K. Nolan

ABSTRACT Avian pathogenic Escherichia coli (APEC), an extraintestinal pathogenic E. coli causing colibacillosis in birds, is responsible for significant economic losses for the poultry industry. Recently, we reported that the APEC pathotype was characterized by possession of a set of genes contained within a 94-kb cluster linked to a ColV plasmid, pAPEC-O2-ColV. These included sitABCD, genes of the aerobactin operon, hlyF, iss, genes of the salmochelin operon, and the 5′ end of cvaB of the ColV operon. However, the results of gene prevalence studies performed among APEC isolates revealed that these traits were not always linked to ColV plasmids. Here, we present the complete sequence of a 174-kb plasmid, pAPEC-O1-ColBM, which contains a putative virulence cluster similar to that of pAPEC-O2-ColV. These two F-type plasmids share remarkable similarity, except that they encode the production of different colicins; pAPEC-O2-ColV contains an intact ColV operon, and pAPEC-O1-ColBM encodes the colicins B and M. Interestingly, remnants of the ColV operon exist in pAPEC-O1-ColBM, hinting that ColBM-type plasmids may have evolved from ColV plasmids. Among APEC isolates, the prevalence of ColBM sequences helps account for the previously observed differences in prevalence between genes of the “conserved” portion of the putative virulence cluster of pAPEC-O2-ColV and those genes within its “variable” portion. These results, in conjunction with Southern blotting and probing of representative ColBM-positive strains, indicate that this “conserved” cluster of putative virulence genes is primarily linked to F-type virulence plasmids among the APEC isolates studied.


2011 ◽  
Vol 147 (3-4) ◽  
pp. 435-439 ◽  
Author(s):  
Nathalie Katy Chanteloup ◽  
Gaëlle Porcheron ◽  
Bernadette Delaleu ◽  
Pierre Germon ◽  
Catherine Schouler ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142504 ◽  
Author(s):  
Jung Seok Lee ◽  
Ho Bin Jang ◽  
Ki Sei Kim ◽  
Tae Hwan Kim ◽  
Se Pyeong Im ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document