scholarly journals Role of the α-Helical Linker of the C-Terminal Translocator in the Biogenesis of the Serine Protease Subfamily of Autotransporters

2006 ◽  
Vol 74 (9) ◽  
pp. 4961-4969 ◽  
Author(s):  
Maria Kostakioti ◽  
Christos Stathopoulos

ABSTRACT Autotransporters are secreted virulence factors that comprise three domains: an N-terminal signal peptide, an internal passenger domain, and a C-terminal β-domain. The mechanism of passenger translocation across the outer membrane remains undefined, with four models having been proposed: the “hairpin,” the “threading,” the “multimeric,” and the “Omp85 (YaeT)” models. In an attempt to understand autotransporter biogenesis, we screened the sequences of the serine protease subfamily of autotransporters (SPATEs) for conserved features indicative of a common secretion mechanism. Our analyses revealed a strictly conserved 14-amino-acid motif within the predicted α-helical linker region, upstream of the β-domain of SPATEs. We investigated the function of this motif through a mutagenesis approach using Tsh as a model. Our studies demonstrate that mutations throughout the conserved motif do not block insertion of the β-domain into the outer membrane. However, nonconservative mutations of four hydrophobic (V1099, L1102, G1107, and L1109) and three polar (N1100, K1104, and R1105) residues of the motif severely decrease or even abolish Tsh biogenesis. Further studies showed that these mutations interfere with passenger transport across the outer membrane. Bioinformatical analyses suggest that the critical polar and hydrophobic amino acids localize on opposite sides of the helix that runs through the β-barrel pore. Our data indicate that the conserved motif is important for passenger secretion across the outer membrane and that mutations in certain residues severely affect the secretion process. We discuss how these results fit with the four proposed models for autotransporter secretion and potential applications in antimicrobial and vaccine development.

2015 ◽  
Vol 6 ◽  
Author(s):  
Antonella Rella ◽  
Visesato Mor ◽  
Amir M. Farnoud ◽  
Ashutosh Singh ◽  
Achraf A. Shamseddine ◽  
...  

2010 ◽  
Vol 78 (8) ◽  
pp. 3516-3528 ◽  
Author(s):  
Yihfen T. Yen ◽  
Casey Tsang ◽  
Todd A. Cameron ◽  
Dennis O. Ankrah ◽  
Athina Rodou ◽  
...  

ABSTRACT Serine protease autotransporters of the family Enterobacteriaceae (SPATE) comprise a family of virulence proteins secreted by enteric Gram-negative bacteria via the autotransporter secretion pathway. A SPATE polypeptide contains a C-terminal translocator domain that inserts into the bacterial outer membrane as a β-barrel structure and mediates secretion of the passenger domain to the extracellular environment. In the present study, we examined the role of conserved residues located in the SPATE β-barrel-forming region in passenger domain secretion. Thirty-nine fully conserved residues in Tsh were mutated by single-residue substitution, and defects in their secretion phenotypes were assessed by cell fractionation and immunochemistry. A total of 22 single mutants exhibited abnormal phenotypes in different cellular compartments. Most mutants affecting secretion are charged residues with side chains pointing into the β-barrel interior. Seven mutants showed notable abnormalities in processing (constructs with the E1231A, E1249A, and R1374A mutations) and β-barrel assembly or insertion into the outer membrane (constructs with the G1158Y, F1360A, Y1375A, and F1377A mutations). The phenotypes of the β-barrel assembly/insertion mutants and the presence of a processed Tsh passenger domain in the periplasm support the possibility that the translocator domain must undergo extensive folding prior to insertion into the outer membrane. Results from double-mutation experiments further demonstrate that F1360 and F1377 affect β-barrel insertion/assembly at different times. In light of these new data, a more refined model for the mechanism of SPATE secretion is presented.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 409
Author(s):  
Susana Santos Braga ◽  
Jéssica S. Barbosa ◽  
Nádia E. Santos ◽  
Firas El-Saleh ◽  
Filipe A. Almeida Paz

The present review describes the various roles of cyclodextrins (CDs) in vaccines against viruses and in antiviral therapeutics. The first section describes the most commonly studied application of cyclodextrins—solubilisation and stabilisation of antiviral drugs; some examples also refer to their beneficial taste-masking activity. The second part of the review describes the role of cyclodextrins in antiviral vaccine development and stabilisation, where they are employed as adjuvants and cryopreserving agents. In addition, cyclodextrin-based polymers as delivery systems for mRNA are currently under development. Lastly, the use of cyclodextrins as pharmaceutical active ingredients for the treatment of viral infections is explored. This new field of application is still taking its first steps. Nevertheless, promising results from the use of cyclodextrins as agents to treat other pathologies are encouraging. We present potential applications of the results reported in the literature and highlight the products that are already available on the market.


2020 ◽  
Vol 295 (28) ◽  
pp. 9421-9432
Author(s):  
Hannadige Sasimali Madusanka Soysa ◽  
Anuwat Aunkham ◽  
Albert Schulte ◽  
Wipa Suginta

Vibrio cholerae is a Gram-negative, facultative anaerobic bacterial species that causes serious disease and can grow on various carbon sources, including chitin polysaccharides. In saltwater, its attachment to chitin surfaces not only serves as the initial step of nutrient recruitment but is also a crucial mechanism underlying cholera epidemics. In this study, we report the first characterization of a chitooligosaccharide-specific chitoporin, VcChiP, from the cell envelope of the V. cholerae type strain O1. We modeled the structure of VcChiP, revealing a trimeric cylinder that forms single channels in phospholipid bilayers. The membrane-reconstituted VcChiP channel was highly dynamic and voltage induced. Substate openings O1′, O2′, and O3′, between the fully open states O1, O2, and O3, were polarity selective, with nonohmic conductance profiles. Results of liposome-swelling assays suggested that VcChiP can transport monosaccharides, as well as chitooligosaccharides, but not other oligosaccharides. Of note, an outer-membrane porin (omp)-deficient strain of Escherichia coli expressing heterologous VcChiP could grow on M9 minimal medium supplemented with small chitooligosaccharides. These results support a crucial role of chitoporin in the adaptive survival of bacteria on chitinous nutrients. Our findings also suggest a promising means of vaccine development based on surface-exposed outer-membrane proteins and the design of novel anticholera agents based on chitooligosaccharide-mimicking analogs.


2020 ◽  
Vol 477 (2) ◽  
pp. 459-459
Author(s):  
Lalith K. Chaganti ◽  
Shubhankar Dutta ◽  
Raja Reddy Kuppili ◽  
Mriganka Mandal ◽  
Kakoli Bose

2015 ◽  
pp. 41-48 ◽  
Author(s):  
T. A. Voeikova ◽  
A. S. Shebanova ◽  
Yu. D. Ivanov ◽  
A. L. Kaysheva ◽  
L. M. Novikova ◽  
...  

2018 ◽  
Author(s):  
Lorraine Tudor Car ◽  
Bhone Myint Kyaw ◽  
Josip Car

BACKGROUND Digital technology called Virtual Reality (VR) is increasingly employed in health professions’ education. Yet, based on the current evidence, its use is narrowed around a few most applications and disciplines. There is a lack of an overview that would capture the diversity of different VR applications in health professions’ education and inform its use and research. OBJECTIVE This narrative review aims to explore different potential applications of VR in health professions’ education. METHODS The narrative synthesis approach to literature review was used to analyse the existing evidence. RESULTS We outline the role of VR features such as immersion, interactivity and feedback and explain the role of VR devices. Based on the type and scope of educational content VR can represent space, individuals, objects, structures or their combination. Application of VR in medical education encompasses environmental, organ and micro level. Environmental VR focuses on training in relation to health professionals’ environment and human interactions. Organ VR educational content targets primarily human body anatomy; and micro VR microscopic structures at the level of cells, molecules and atoms. We examine how different VR features and health professional education areas match these three VR types. CONCLUSIONS We conclude by highlighting the gaps in the literature and providing suggestions for future research.


Author(s):  
Emily C. Whipple ◽  
Camille A. Favero ◽  
Neal F. Kassell

Abstract Introduction Intra-arterial (lA) delivery of therapeutic agents across the blood-brain barrier (BBB) is an evolving strategy which enables the distribution of high concentration therapeutics through a targeted vascular territory, while potentially limiting systemic toxicity. Studies have demonstrated lA methods to be safe and efficacious for a variety of therapeutics. However, further characterization of the clinical efficacy of lA therapy for the treatment of brain tumors and refinement of its potential applications are necessary. Methods We have reviewed the preclinical and clinical evidence supporting superselective intraarterial cerebral infusion (SSJACI) with BBB disruption for the treatment of brain tumors. In addition, we review ongoing clinical trials expanding the applicability and investigating the efficacy of lA therapy for the treatment of brain tumors. Results Trends in recent studies have embraced the use of SSIACI and less neurotoxic chemotherapies. The majority of trials continue to use mannitol as the preferred method of hyperosmolar BBB disruption. Recent preclinical and preliminary human investigations into the lA delivery of Bevacizumab have demonstrated its safety and efficacy as an anti-tumor agent both alone and in combination with chemotherapy. Conclusion lA drug delivery may significantly affect the way treatment are delivered to patients with brain tumors, and in particular GBM. With refinement and standardization of the techniques of lA drug delivery, improved drug selection and formulations, and the development of methods to minimize treatment-related neurological injury, lA therapy may offer significant benefits for the treatment of brain tumors.


Sign in / Sign up

Export Citation Format

Share Document