scholarly journals Focused ultrasound in neuro-oncology: the role of the Focused Ultrasound Foundation in driving adoption and innovation

Author(s):  
Emily C. Whipple ◽  
Camille A. Favero ◽  
Neal F. Kassell

Abstract Introduction Intra-arterial (lA) delivery of therapeutic agents across the blood-brain barrier (BBB) is an evolving strategy which enables the distribution of high concentration therapeutics through a targeted vascular territory, while potentially limiting systemic toxicity. Studies have demonstrated lA methods to be safe and efficacious for a variety of therapeutics. However, further characterization of the clinical efficacy of lA therapy for the treatment of brain tumors and refinement of its potential applications are necessary. Methods We have reviewed the preclinical and clinical evidence supporting superselective intraarterial cerebral infusion (SSJACI) with BBB disruption for the treatment of brain tumors. In addition, we review ongoing clinical trials expanding the applicability and investigating the efficacy of lA therapy for the treatment of brain tumors. Results Trends in recent studies have embraced the use of SSIACI and less neurotoxic chemotherapies. The majority of trials continue to use mannitol as the preferred method of hyperosmolar BBB disruption. Recent preclinical and preliminary human investigations into the lA delivery of Bevacizumab have demonstrated its safety and efficacy as an anti-tumor agent both alone and in combination with chemotherapy. Conclusion lA drug delivery may significantly affect the way treatment are delivered to patients with brain tumors, and in particular GBM. With refinement and standardization of the techniques of lA drug delivery, improved drug selection and formulations, and the development of methods to minimize treatment-related neurological injury, lA therapy may offer significant benefits for the treatment of brain tumors.

2018 ◽  
Vol 44 (2) ◽  
pp. E10 ◽  
Author(s):  
Layton Lamsam ◽  
Eli Johnson ◽  
Ian D. Connolly ◽  
Max Wintermark ◽  
Melanie Hayden Gephart

Magnetic resonance–guided focused ultrasound (MRgFUS) has been used extensively to ablate brain tissue in movement disorders, such as essential tremor. At a lower energy, MRgFUS can disrupt the blood-brain barrier (BBB) to allow passage of drugs. This focal disruption of the BBB can target systemic medications to specific portions of the brain, such as for brain tumors. Current methods to bypass the BBB are invasive, as the BBB is relatively impermeable to systemically delivered antineoplastic agents. Multiple healthy and brain tumor animal models have suggested that MRgFUS disrupts the BBB and focally increases the concentration of systemically delivered antitumor chemotherapy, immunotherapy, and gene therapy. In animal tumor models, combining MRgFUS with systemic drug delivery increases median survival times and delays tumor progression. Liposomes, modified microbubbles, and magnetic nanoparticles, combined with MRgFUS, more effectively deliver chemotherapy to brain tumors. MRgFUS has great potential to enhance brain tumor drug delivery, while limiting treatment toxicity to the healthy brain.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Liang Chen ◽  
Peng He ◽  
Zhifeng Jia ◽  
Xinyuan Zhu ◽  
Deyue Yan

AbstractAn economical strategy to prepare hyperbranched poly(sulfone-amine) modified β-cyclodextrins (HPSA-m-CDs) from natural β-cyclodextrin (β-CD) and other commercially available materials has been reported. The final product has many good properties of hyperbranched poly(sulfone-amine)s (good solubility, low viscosity etc.), while its inclusion ability can also be well kept. It is a feasible approach to prepare functionalized modified cyclodextrin at very low cost, and may have potential applications in the fields of catalysis, drug delivery, food additives, etc.


2018 ◽  
Vol 7 (2.19) ◽  
pp. 87
Author(s):  
D BALAJ ◽  
C SARALA RUBI ◽  
N G. RENGANATHAN

Attractive nanoparticles have been broadly considered on account of their potential applications as complexity operators in attractive reverberation imaging (MRI) of tumors, cell and DNA partition, attractively guided medication conveyance, tumor hyperthermia. Among the attractive oxides, magnetite nanoparticles are most appropriate because of their low danger and great attractive properties which may be used in drug delivery. Magnetite nanoparticles were synthesized using FeCl3 and FeSO4 as precursors and characterized for size and shape using non-contact AFM.  The formation of magnetite was confirmed by XRD pattern. The elemental composition of the obtained phase was determined using EDAX. In this work, we are aiming to develop drug loaded biopolymer Magnetite nanoparticles for biomedical application. Our main objective is to synthesize and characterize Magnetite (Fe3O4) nanoparticles.  


Author(s):  
Maher Fathalla

The development of synthetic strategies for functional building units plays a central role in supramolecular chemistry. Both porphyrin and crown ethers have attracted the attention of researchers worldwide owing to their unique properties. It is envisioned that the integration of the two molecules will result in hybrid materials with potential applications in many fields. In the present study, a new porphyrin derivative 3 appended with four 18-crown-6 (18C6) ether moieties was synthesized through the Suzuki-Miyaura coupling of boronic ester porphyrin 1 and 4-bromobenzo-18-crown-6 2 in 80% yield. Porphyrin 3 was fully characterized by 1H/[Formula: see text]C NMR spectroscopy and high resolution mass spectrometry. The tendency of the 18C6 to form host-guest complexes with ammonium cations was exploited to assemble cation responsive hybrid material of porphyrin 3 and ammonium immobilized mesoporous silica nanoparticles (MSNs). Furthermore, the potential application of the 3/MSNs conjugate as a cation-responsive drug delivery vehicle was investigated in solution by UV-vis and fluorescence spectroscopies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rob Van Houdt ◽  
Joachim Vandecraen ◽  
Wietse Heylen ◽  
Natalie Leys ◽  
Pieter Monsieurs ◽  
...  

Cupriavidus metallidurans strains display a decreased viability when incubated in rich medium at a temperature of 37°C compared to their normal growth temperature of 30°C, a phenomenon coined “temperature-induced mortality and mutagenesis” (TIMM). To scrutinize this aberrant phenotype further, the contributions of specific inducers and protective agents were determined. Different growth media, including lysogeny broth (LB) and Schatz, and components, including casamino acids, in particular amino acids (proline, cysteine, glycine, glutamine, leucine, histidine and phenylalanine) and ammonium, were found to induce TIMM at 37°C. Sorbitol was found to counteract TIMM. Furthermore, although TIMM is well conserved within the C. metallidurans species, multiple and strain-specific TIMM inducers exist. Twenty-nine percent of the TIMM survivors inherited resistance to TIMM. Whole-genome sequencing of two resistant derivatives revealed an important role of an uncharacterized oxidoreductase, indicating putative metabolic poisoning when grown in high-concentration nitrogen-containing media at 37°C.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1933
Author(s):  
Sathish Sundar Dhilip Kumar ◽  
Heidi Abrahamse

In recent years, the role of nanotechnology in drug delivery has become increasingly important, and this field of research holds many potential benefits for cancer treatment, particularly, in achieving cancer cell targeting and reducing the side effects of anticancer drugs. Biocompatible and biodegradable properties have been essential for using a novel material as a carrier molecule in drug delivery applications. Biocompatible nanocarriers are easy to synthesize, and their surface chemistry often enables them to load different types of photosensitizers (PS) to use targeted photodynamic therapy (PDT) for cancer treatment. This review article explores recent studies on the use of different biocompatible nanocarriers, their potential applications in PDT, including PS-loaded biocompatible nanocarriers, and the effective targeting therapy of PS-loaded biocompatible nanocarriers in PDT for cancer treatment. Furthermore, the review briefly recaps the global clinical trials of PDT and its applications in cancer treatment.


2021 ◽  
Author(s):  
David Buceta ◽  
Shahana Huseyinova ◽  
Miguel Cuerva ◽  
Héctor Lozano ◽  
Lisandro J. Giovanetti ◽  
...  

Subnanometer-sized metal clusters often feature a molecule-like electronic structure, which makes their physical and chemical properties significantly different from those of nanoparticles and bulk material. Considering potential applications, there is a major concern about their thermal stability and susceptibility towards oxidation. Cu clusters of only 5 atoms (Cu<sub>5</sub> clusters) are first synthesized in high concentration using a new-generation wet chemical method. Next, it is shown that, contrary to what is currently assumed, Cu<sub>5</sub> clusters display nobility, beyond resistance to irreversible oxidation, at a broad range of temperatures and oxygen pressures. The outstanding nobility arises from an unusual reversible oxidation which is observed by <i>in situ</i> X-ray Absorption Spectroscopy and X-ray Photoelectron Spectroscopy on Cu<sub>5</sub> clusters deposited onto highly oriented pyrolitic graphite at different oxygen pressures and up to 773 K. This atypical property is explained by a theoretical approach combining different state-of-the-art first principles theories. It reveals the essential role of collective quantum effects in the physical mechanism responsible for the nobility of Cu<sub>5</sub> clusters, encompassing a structural ‘breathing’ through concerted Cu–Cu elongations/contractions upon O<sub>2</sub> uptake/release, and collective charge transfer as well. A predictive phase diagram of their reversible oxidation states is also delivered, agreeing with the experimental observations. The collective quantum effects responsible of the observed nobility are expected to be general in subnanometer-sized metal clusters, pushing this new generation of materials to an upper level.


Sign in / Sign up

Export Citation Format

Share Document